【语义分割】记录2:yolo系列
图像分割笔记
- 1、源码下载
- 2、数据获取
- 3、环境配置
- 4、模型训练
- 5、模型推理
- 6、模型部署
- 6.1 yolov5_flask学习
- 7、版本上传
1、源码下载
git clone https://github.com/ultralytics/ultralytics.git
git回到对应版本:
方式一:使用 git checkout(临时查看旧版本)
git checkout <commit-hash>
git checkout v8.3.170
方式二:使用 git reset(永久回退当前分支)
git reset --hard <commit-hash>
查看距离哪个标签最近
# 查看某个提交的最近标签
git describe abc1234# 只显示标签名(忽略距离)
git describe --tags --abbrev=0 abc1234# 查看当前提交的最近标签
git describe
2、数据获取
1、yolo官方分割数据集: https://docs.ultralytics.com/zh/datasets/segment/#ultralytics-yolo-format
https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-seg.zip
2、 自己标注数据集
通过网盘分享的文件:马
链接: https://pan.baidu.com/s/1vX9WokV8Nx-MzHXZt8Ppnw?pwd=4xca 提取码: 4xca
3、参考链接
(1)基于YOLOv11的语义分割模型训练自己的数据集:
https://blog.csdn.net/qq_51828120/article/details/147215779
(2)基于yolo11-seg的水果桃子语义分割:
https://mp.weixin.qq.com/s/a2Ln_zGvO07lep5oJqhZ4w?login=from_csdn
2、人工标注数据集后转yolo
2.1 文件夹划分
datadir_preprocess.py
import os
import shutil# 原始文件夹路径
source_folder = r"D:\songlin\data\8.图像分割相关\马"# 创建目标文件夹
json_folder = os.path.join(source_folder, "json")
image_folder = os.path.join(source_folder, "image")# 如果目标文件夹不存在,则创建
os.makedirs(json_folder, exist_ok=True)
os.makedirs(image_folder, exist_ok=True)# 遍历文件夹中的所有文件
for filename in os.listdir(source_folder):file_path = os.path.join(source_folder, filename)# 如果是JSON文件,移动到json_files文件夹if filename.endswith(".json"):shutil.move(file_path, os.path.join(json_folder, filename))# 如果是图片文件(常见格式),移动到image_files文件夹elif filename.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif')):shutil.move(file_path, os.path.join(image_folder, filename))print("文件分类完成!")
2.2 数据集格式处理
json2yolo_seg.py
import os
import json# 指定JSON文件夹路径和YOLO保存文件夹路径
json_folder = r"D:\songlin\data\8.图像分割相关\马\json" # 替换为实际的JSON文件夹路径
yolo_save_folder = r"D:\songlin\data\8.图像分割相关\马\yolo_txt" # 替换为实际保存YOLO txt文件的文件夹name = ["horse"] #标签名
# 如果保存文件夹不存在,创建它
if not os.path.exists(yolo_save_folder):os.makedirs(yolo_save_folder)# 将实例分割数据转换为YOLO格式
def convert_to_yolo_format(json_data, image_width, image_height):yolo_data = []shapes = json_data['shapes']for shape in shapes:label = shape['label']points = shape['points']# 获取分割边界框的x和y的最大最小值x_coords = [p[0] for p in points]y_coords = [p[1] for p in points]x_min = min(x_coords)x_max = max(x_coords)y_min = min(y_coords)y_max = max(y_coords)# 计算中心点,宽度和高度(归一化到[0, 1]范围)x_center = (x_min + x_max) / 2 / image_widthy_center = (y_min + y_max) / 2 / image_heightbbox_width = (x_max - x_min) / image_widthbbox_height = (y_max - y_min) / image_height# 归一化分割点normalized_points = [(x / image_width, y / image_height) for x, y in points]# 创建YOLO格式的字符串 (格式: class_id x_center y_center width height seg_points)if label not in name:name.append(label)class_id = name.index(label)yolo_format = f"{class_id} {x_center} {y_center} {bbox_width} {bbox_height} "# 添加分割坐标点yolo_format += " ".join([f"{x} {y}" for x, y in normalized_points])yolo_data.append(yolo_format)return yolo_data# 遍历文件夹中的所有JSON文件
for filename in os.listdir(json_folder):if filename.endswith(".json"):json_path = os.path.join(json_folder, filename)with open(json_path, 'r', encoding='utf-8') as f:json_data = json.load(f)# 获取图像大小image_width = json_data['imageWidth']image_height = json_data['imageHeight']# 转换为YOLO格式yolo_data = convert_to_yolo_format(json_data, image_width, image_height)# 保存为txt文件txt_filename = os.path.splitext(filename)[0] + ".txt"txt_save_path = os.path.join(yolo_save_folder, txt_filename)with open(txt_save_path, 'w', encoding='utf-8') as f:for line in yolo_data:f.write(line + "\n")print("转换完成并保存为YOLO格式!")
3、 数据集划分
import os
import shutil# 原始文件夹路径
source_folder = r"D:\songlin\data\8.图像分割相关\马"# 创建目标文件夹
json_folder = os.path.join(source_folder, "json")
image_folder = os.path.join(source_folder, "image")# 如果目标文件夹不存在,则创建
os.makedirs(json_folder, exist_ok=True)
os.makedirs(image_folder, exist_ok=True)# 遍历文件夹中的所有文件
for filename in os.listdir(source_folder):file_path = os.path.join(source_folder, filename)# 如果是JSON文件,移动到json_files文件夹if filename.endswith(".json"):shutil.move(file_path, os.path.join(json_folder, filename))# 如果是图片文件(常见格式),移动到image_files文件夹elif filename.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif')):shutil.move(file_path, os.path.join(image_folder, filename))print("文件分类完成!")
参考链接:
1、https://blog.csdn.net/zqq19980906_/article/details/143092674
3、环境配置
conda create -n yolov11 python==3.8.10 -y
conda activate yolov11
pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 --index-url https://download.pytorch.org/whl/cu118
conda install cudatoolkit==11.8.0
# 找到cudnn地址,解压进对应环境里的library文件夹下,将解压后的cudnn文件夹直接复制进去替换
E:\software_install\miniconda\envs\yolov11\Library
pip install opencv-python tqdm pyyaml requests matplotlib pandas scipy
4、模型训练
train.py
from ultralytics import YOLOif __name__ == '__main__':# model = YOLO(r'ultralytics/cfg/models/11/yolo11-seg.yaml')model = YOLO(r'yolo11n-seg.pt')model.train(data=r'data.yaml',imgsz=640,epochs=100,single_cls=True,batch=16,workers=10,device='0',)
5、模型推理
predict.py
import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLOif __name__ == '__main__':model = YOLO('runs/segment/train/weights/best.pt')model.predict(source=r'D:\songlin\data\8.图像分割相关\马\dataset\val\images\19302950_164550132000_2.jpg',imgsz=640,device='0',save=True,conf=0.25,line_width=4,box=True,show_labels=True,show_conf=True,retina_masks=True,show=True # 新增,实时显示预测结果窗口)
6、模型部署
6.1 yolov5_flask学习
1、 环境配置
conda create -n yolov5_flask python=3.8 -ypip install torch==2.2.0 torchvision==0.17.0 torchaudio==2.2.0 --index-url https://download.pytorch.org/whl/cu118pip install flask opencv-python pyyaml matplotlib scipy tqdm
下载yolov5_v3.0版本,这个不需要操作,yolov5版本不能setup.py安装
代码存储链接:https://gitee.com/songyulining/yolov5_flask_vue
2、npm前端环境配置
安装Node.js
https://nodejs.org/zh-cn
安装依赖
npm install
7、版本上传
git remote set-url origin https://gitee.com/songyulining/yolov11_seg_run.git
git push origin HEAD:refs/heads/v8.3.170