当前位置: 首页 > news >正文

风光氢系统仿真与容量扩展设计

风光氢系统仿真与容量扩展设计

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家,觉得好请收藏。点击跳转到网站。

1. 引言

随着全球对可再生能源和清洁能源需求的增加,风光氢系统作为一种综合能源解决方案受到广泛关注。本文将使用Python语言开发一个风光氢系统的仿真模型,从原始的小规模系统(光伏20KW、风电23KW、电解槽20KW、380V交流母线)扩展到更大的规模(光伏1.5MW、风电1MW、电解槽1MW、690V交流母线)。

本仿真将涵盖以下内容:

  • 风光发电模型建立
  • 电解槽特性建模
  • 系统动态仿真
  • 能量管理与控制策略
  • 经济性分析

2. 系统建模

2.1 光伏发电系统模型

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.interpolate import interp1dclass PVSystem:def __init__(self, rated_power=1500, efficiency=0.18, temp_coeff=-0.0045):"""光伏系统模型:param rated_power: 额定功率(kW):param efficiency: 光电转换效率:param temp_coeff: 温度系数(%/°C)"""self.rated_power = rated_power  # kWself.efficiency = efficiencyself.temp_coeff = temp_coeffdef calculate_power(self, irradiance, temp_ambient, temp_nominal=25):"""计算光伏输出功率:param irradiance: 光照强度(W/m²):param temp_ambient: 环境温度(°C):param temp_nominal: 标称温度(°C):return: 输出功率(kW)"""# 温度修正temp_cell = temp_ambient + 0.025 * irradianceefficiency_temp = self.efficiency * (1 + self.temp_coeff * (temp_cell - temp_nominal))# 功率计算power_dc = (irradiance / 1000) * self.rated_power * efficiency_temp / self.efficiency# 考虑逆变器效率(假设为96%)power_ac = power_dc * 0.96# 确保不超过额定功率power_ac = np.minimum(power_ac, self.rated_power)return max(0, power_ac)

2.2 风力发电系统模型

class WindTurbine:def __init__(self, rated_power=1000, cut_in_speed=3, rated_speed=12, cut_out_speed=25):"""风力发电机模型:param rated_power: 额定功率(kW):param cut_in_speed: 切入风速(m/s):param rated_speed: 额定风速(m/s):param cut_out_speed: 切出风速(m/s)"""self.rated_power = rated_powerself.cut_in_speed = cut_in_speedself.rated_speed = rated_speedself.cut_out_speed = cut_out_speeddef calculate_power(self, wind_speed):"""计算风力发电机输出功率:param wind_speed: 风速(m/s):return: 输出功率(kW)"""if wind_speed < self.cut_in_speed or wind_speed > self.cut_out_speed:return 0elif wind_speed < self.rated_speed:# 在切入风速和额定风速之间按立方关系计算return self.rated_power * ((wind_speed - self.cut_in_speed) / (self.rated_speed - self.cut_in_speed)) ** 3else:return self.rated_power

2.3 电解槽模型

class Electrolyzer:def __init__(self, rated_power=1000, efficiency=0.7, min_load=0.2):"""电解槽模型:param rated_power: 额定功率(kW):param efficiency: 电解效率(从电能到氢气的低热值):param min_load: 最小负载系数(0-1)"""self.rated_power = rated_powerself.efficiency = efficiencyself.min_load = min_loadself.current_power = 0self.h2_production_rate = 0  # kg/h# 氢气参数self.h2_lhv = 33.3  # kWh/kg (氢气低热值)def set_power(self, power_available):"""设置电解槽运行功率:param power_available: 可用功率(kW):return: 实际消耗功率(kW)"""# 确保功率在允许范围内power_available = max(0, power_available)power_possible = min(power_available, self.rated_power)# 检查是否低于最小负载if power_possible < self.rated_power * self.min_load:self.current_power = 0self.h2_production_rate = 0return 0else:self.current_power = power_possible# 计算氢气产量 (kg/h)self.h2_production_rate = (self.current_power * self.efficiency) / self.h2_lhvreturn self.current_power

3. 系统集成与仿真

3.1 系统架构设计

class RenewableHydrogenSystem:def __init__(self, pv_params, wind_params, electrolyzer_params, bus_voltage=690):"""风光氢集成系统:param pv_params: 光伏系统参数:param wind_params: 风机参数:param electrolyzer_params: 电解槽参数:param bus_voltage: 母线电压(V)"""self.pv_system = PVSystem(**pv_params)self.wind_turbine = WindTurbine(**wind_params)self.electrolyzer = Electrolyzer(**electrolyzer_params)self.bus_voltage = bus_voltage# 系统状态变量self.pv_power = 0self.wind_power = 0self.total_renewable_power = 0self.electrolyzer_power = 0self.excess_power = 0self.h2_produced = 0  # 累计产氢量(kg)self.time_elapsed = 0  # 仿真时间(h)def update(self, irradiance, temp_ambient, wind_speed, time_step=1):"""更新系统状态:param irradiance: 光照强度(W/m²):param temp_ambient: 环境温度(°C):param wind_speed: 风速(m/s):param time_step: 时间步长(h)"""# 计算可再生能源发电self.pv_power = self.pv_system.calculate_power(irradiance, temp_ambient)self.wind_power = self.wind_turbine.calculate_power(wind_speed)self.total_renewable_power = self.pv_power + self.wind_power# 分配电力给电解槽self.electrolyzer_power = self.electrolyzer.set_power(self.total_renewable_power)# 计算多余电力self.excess_power = max(0, self.total_renewable_power - self.electrolyzer_power)# 更新氢气产量self.h2_produced += self.electrolyzer.h2_production_rate * time_stepself.time_elapsed += time_stepdef get_system_status(self):"""获取系统当前状态:return: 状态字典"""return {'pv_power': self.pv_power,'wind_power': self.wind_power,'total_renewable_power': self.total_renewable_power,'electrolyzer_power': self.electrolyzer_power,'excess_power': self.excess_power,'h2_production_rate': self.electrolyzer.h2_production_rate,'total_h2_produced': self.h2_produced,'time_elapsed': self.time_elapsed}

3.2 仿真运行

def run_simulation():# 系统参数配置system_params = {'pv_params': {'rated_power': 1500},  # 1.5 MW'wind_params': {'rated_power': 1000},  # 1 MW'electrolyzer_params': {'rated_power': 1000},  # 1 MW'bus_voltage': 690}# 创建系统实例rh_system = RenewableHydrogenSystem(**system_params)# 模拟一年的运行(每小时一个数据点)hours_per_year = 24 * 365results = []for hour in range(hours_per_year):# 生成模拟数据(实际应用中应使用真实气象数据)# 假设光照强度遵循正弦曲线,夏季高冬季低day_of_year = hour % 365irradiance = max(0, 800 + 600 * np.sin(2 * np.pi * (day_of_year - 80) / 365))# 温度模拟temp_ambient = 15 + 10 * np.sin(2 * np.pi * (day_of_year - 80) / 365)# 风速模拟(Weibull分布)shape_param = 2scale_param = 8wind_speed = np.random.weibull(shape_param) * scale_param# 更新系统状态rh_system.update(irradiance, temp_ambient, wind_speed)# 记录结果results.append(rh_system.get_system_status())# 转换为DataFrame便于分析df_results = pd.DataFrame(results)return df_results# 运行仿真
df_simulation = run_simulation()

4. 结果分析与可视化

4.1 能源生产分析

def analyze_results(df):# 计算年总发电量total_pv_gen = df['pv_power'].sum()total_wind_gen = df['wind_power'].sum()total_renewable_gen = df['total_renewable_power'].sum()# 计算电解槽利用率electrolyzer_utilization = df['electrolyzer_power'].sum() / (1000 * 8760)# 计算氢气产量total_h2_produced = df['total_h2_produced'].iloc[-1]# 计算弃风弃光率excess_energy_rate = df['excess_power'].sum() / total_renewable_genprint(f"光伏年发电量: {total_pv_gen:,.0f} kWh")print(f"风电年发电量: {total_wind_gen:,.0f} kWh")print(f"可再生能源总发电量: {total_renewable_gen:,.0f} kWh")print(f"电解槽利用率: {electrolyzer_utilization:.1%}")print(f"年氢气产量: {total_h2_produced:,.0f} kg")print(f"弃风弃光率: {excess_energy_rate:.1%}")return {'total_pv_gen': total_pv_gen,'total_wind_gen': total_wind_gen,'total_renewable_gen': total_renewable_gen,'electrolyzer_utilization': electrolyzer_utilization,'total_h2_produced': total_h2_produced,'excess_energy_rate': excess_energy_rate}# 分析结果
analysis_results = analyze_results(df_simulation)

4.2 可视化结果

def plot_results(df):plt.figure(figsize=(15, 10))# 选择一周的数据进行可视化sample_data = df.iloc[24*180:24*187].copy()sample_data['time'] = sample_data.index % 24# 绘制功率曲线plt.subplot(2, 1, 1)plt.plot(sample_data['time'], sample_data['pv_power'], label='光伏发电')plt.plot(sample_data['time'], sample_data['wind_power'], label='风力发电')plt.plot(sample_data['time'], sample_data['electrolyzer_power'], label='电解槽用电')plt.plot(sample_data['time'], sample_data['excess_power'], label='多余电力')plt.xlabel('时间 (小时)')plt.ylabel('功率 (kW)')plt.title('一周电力平衡')plt.legend()plt.grid()# 绘制氢气产量plt.subplot(2, 1, 2)plt.plot(df['total_h2_produced'])plt.xlabel('时间 (小时)')plt.ylabel('累计氢气产量 (kg)')plt.title('氢气产量累计')plt.grid()plt.tight_layout()plt.show()# 绘制结果
plot_results(df_simulation)

5. 系统优化与控制策略

5.1 电解槽优化控制

class OptimizedElectrolyzer(Electrolyzer):def __init__(self, rated_power=1000, efficiency=0.7, min_load=0.2, ramp_rate=0.2, standby_power=0.05):"""优化的电解槽模型,考虑爬坡率和待机功率:param ramp_rate: 最大功率变化率(标幺值/小时):param standby_power: 待机功率(标幺值)"""super().__init__(rated_power, efficiency, min_load)self.ramp_rate = ramp_rateself.standby_power = standby_power * rated_powerself.is_standby = Falsedef set_power(self, power_available):# 检查是否从待机状态恢复if self.is_standby and power_available >= self.rated_power * self.min_load:self.is_standby = Falseif self.is_standby:self.current_power = 0self.h2_production_rate = 0return self.standby_power# 计算功率变化限制max_power_change = self.ramp_rate * self.rated_powertarget_power = min(power_available, self.rated_power)# 应用爬坡限制if target_power > self.current_power:possible_power = min(self.current_power + max_power_change, target_power)else:possible_power = max(self.current_power - max_power_change, target_power)# 检查是否低于最小负载if possible_power < self.rated_power * self.min_load:if self.current_power > 0:# 进入待机模式self.is_standby = Trueself.current_power = 0self.h2_production_rate = 0return self.standby_powerelse:self.current_power = 0self.h2_production_rate = 0return 0else:self.current_power = possible_powerself.h2_production_rate = (self.current_power * self.efficiency) / self.h2_lhvreturn self.current_power

5.2 混合储能系统

class HybridEnergyStorage:def __init__(self, battery_capacity=500, battery_power=200, h2_storage_capacity=1000, initial_soc=0.5):"""混合储能系统(电池+储氢):param battery_capacity: 电池容量(kWh):param battery_power: 电池功率(kW):param h2_storage_capacity: 储氢容量(kg):param initial_soc: 初始荷电状态"""self.battery_capacity = battery_capacityself.battery_power = battery_powerself.battery_soc = initial_soc * battery_capacity  # kWhself.h2_storage_capacity = h2_storage_capacityself.h2_stored = 0  # kgself.charge_efficiency = 0.95self.discharge_efficiency = 0.95def store_energy(self, power, duration):"""存储能量:param power: 可用功率(kW):param duration: 持续时间(h):return: 实际存储功率(kW)"""available_power = min(power, self.battery_power)energy = available_power * duration# 检查电池容量max_energy = (self.battery_capacity - self.battery_soc) / self.charge_efficiencyactual_energy = min(energy, max_energy)self.battery_soc += actual_energy * self.charge_efficiencyreturn actual_energy / durationdef release_energy(self, power, duration):"""释放能量:param power: 需求功率(kW):param duration: 持续时间(h):return: 实际释放功率(kW)"""available_power = min(power, self.battery_power)energy = available_power * duration# 检查电池能量max_energy = self.battery_soc * self.discharge_efficiencyactual_energy = min(energy, max_energy)self.battery_soc -= actual_energy / self.discharge_efficiencyreturn actual_energy / durationdef store_hydrogen(self, h2_amount):"""存储氢气:param h2_amount: 氢气量(kg):return: 实际存储量(kg)"""available_capacity = self.h2_storage_capacity - self.h2_storedactual_amount = min(h2_amount, available_capacity)self.h2_stored += actual_amountreturn actual_amountdef get_status(self):"""获取储能系统状态:return: 状态字典"""return {'battery_soc': self.battery_soc,'battery_soc_percent': self.battery_soc / self.battery_capacity * 100,'h2_stored': self.h2_stored,'h2_storage_percent': self.h2_stored / self.h2_storage_capacity * 100}

6. 经济性分析

6.1 成本模型

class EconomicAnalysis:def __init__(self, pv_capex=800, wind_capex=1200, electrolyzer_capex=1000, battery_capex=300, h2_storage_capex=500, opex_rate=0.03, project_lifetime=20, discount_rate=0.05):"""经济性分析模型:param pv_capex: 光伏单位投资成本($/kW):param wind_capex: 风电单位投资成本($/kW):param electrolyzer_capex: 电解槽单位投资成本($/kW):param battery_capex: 电池单位投资成本($/kWh):param h2_storage_capex: 储氢单位投资成本($/kg):param opex_rate: 年运营成本比例:param project_lifetime: 项目寿命(年):param discount_rate: 贴现率"""self.pv_capex = pv_capexself.wind_capex = wind_capexself.electrolyzer_capex = electrolyzer_capexself.battery_capex = battery_capexself.h2_storage_capex = h2_storage_capexself.opex_rate = opex_rateself.project_lifetime = project_lifetimeself.discount_rate = discount_ratedef calculate_lcoe(self, annual_energy, total_capex):"""计算平准化能源成本(LCOE):param annual_energy: 年发电量(kWh):param total_capex: 总投资成本($):return: LCOE($/kWh)"""# 计算年化投资成本annuity_factor = (self.discount_rate * (1 + self.discount_rate)**self.project_lifetime) / \((1 + self.discount_rate)**self.project_lifetime - 1)# 年OPEXannual_opex = total_capex * self.opex_rate# 年总成本annual_cost = total_capex * annuity_factor + annual_opexreturn annual_cost / annual_energydef calculate_lcoh(self, annual_h2, total_capex):"""计算平准化氢气成本(LCOH):param annual_h2: 年氢气产量(kg):param total_capex: 总投资成本($):return: LCOH($/kg)"""# 计算年化投资成本annuity_factor = (self.discount_rate * (1 + self.discount_rate)**self.project_lifetime) / \((1 + self.discount_rate)**self.project_lifetime - 1)# 年OPEXannual_opex = total_capex * self.opex_rate# 年总成本annual_cost = total_capex * annuity_factor + annual_opexreturn annual_cost / annual_h2def evaluate_project(self, system_params, annual_results):"""评估项目经济性:param system_params: 系统参数:param annual_results: 年运行结果:return: 经济性指标"""# 计算总投资成本pv_capex = system_params['pv_params']['rated_power'] * self.pv_capexwind_capex = system_params['wind_params']['rated_power'] * self.wind_capexelectrolyzer_capex = system_params['electrolyzer_params']['rated_power'] * self.electrolyzer_capex# 假设储能系统容量battery_capex = 500 * self.battery_capex  # 500 kWh电池h2_storage_capex = 200 * self.h2_storage_capex  # 200 kg储氢total_capex = pv_capex + wind_capex + electrolyzer_capex + battery_capex + h2_storage_capex# 计算LCOE和LCOHlcoe = self.calculate_lcoe(annual_results['total_renewable_gen'], total_capex)lcoh = self.calculate_lcoh(annual_results['total_h2_produced'], total_capex)return {'total_capex': total_capex,'lcoe': lcoe,'lcoh': lcoh}

6.2 敏感性分析

def sensitivity_analysis():# 基础情景base_params = {'pv_capex': 800,'wind_capex': 1200,'electrolyzer_capex': 1000,'battery_capex': 300,'h2_storage_capex': 500,'opex_rate': 0.03,'project_lifetime': 20,'discount_rate': 0.05}# 系统参数system_params = {'pv_params': {'rated_power': 1500},'wind_params': {'rated_power': 1000},'electrolyzer_params': {'rated_power': 1000}}# 年运行结果(假设)annual_results = {'total_renewable_gen': 4.5e6,  # 4,500 MWh'total_h2_produced': 80_000  # 80吨}# 敏感性分析参数capex_variations = np.linspace(0.7, 1.3, 5)  # -30%到+30%discount_rates = [0.03, 0.05, 0.07, 0.10]# 结果存储results = []# 投资成本敏感性for factor in capex_variations:params = base_params.copy()params['pv_capex'] *= factorparams['wind_capex'] *= factorparams['electrolyzer_capex'] *= factorecon = EconomicAnalysis(**params)metrics = econ.evaluate_project(system_params, annual_results)results.append({'analysis_type': 'capex_sensitivity','variation': f"{((factor-1)*100):.0f}%",'lcoe': metrics['lcoe'],'lcoh': metrics['lcoh']})# 贴现率敏感性for rate in discount_rates:params = base_params.copy()params['discount_rate'] = rateecon = EconomicAnalysis(**params)metrics = econ.evaluate_project(system_params, annual_results)results.append({'analysis_type': 'discount_rate','variation': f"{rate*100:.0f}%",'lcoe': metrics['lcoe'],'lcoh': metrics['lcoh']})# 转换为DataFramedf_sensitivity = pd.DataFrame(results)# 绘制结果plt.figure(figsize=(12, 6))# LCOH敏感性plt.subplot(1, 2, 1)capex_data = df_sensitivity[df_sensitivity['analysis_type'] == 'capex_sensitivity']plt.plot(capex_data['variation'], capex_data['lcoh'], 'o-', label='CAPEX变化')rate_data = df_sensitivity[df_sensitivity['analysis_type'] == 'discount_rate']plt.plot(rate_data['variation'], rate_data['lcoh'], 's-', label='贴现率变化')plt.xlabel('参数变化')plt.ylabel('LCOH ($/kg)')plt.title('氢气成本敏感性分析')plt.grid()plt.legend()# LCOE敏感性plt.subplot(1, 2, 2)plt.plot(capex_data['variation'], capex_data['lcoe'], 'o-', label='CAPEX变化')plt.plot(rate_data['variation'], rate_data['lcoe'], 's-', label='贴现率变化')plt.xlabel('参数变化')plt.ylabel('LCOE ($/kWh)')plt.title('电力成本敏感性分析')plt.grid()plt.legend()plt.tight_layout()plt.show()return df_sensitivity# 执行敏感性分析
df_sensitivity = sensitivity_analysis()

7. 系统扩展与电压升级

7.1 从380V到690V的升级考虑

class VoltageConverter:def __init__(self, input_voltage=380, output_voltage=690, efficiency=0.98):"""电压转换器模型:param input_voltage: 输入电压(V):param output_voltage: 输出电压(V):param efficiency: 转换效率"""self.input_voltage = input_voltageself.output_voltage = output_voltageself.efficiency = efficiencydef convert(self, power):"""功率转换:param power: 输入功率(kW):return: 输出功率(kW)"""return power * self.efficiencydef system_upgrade_analysis():"""系统从380V升级到690V的分析"""# 原始系统参数(380V)original_params = {'pv_params': {'rated_power': 20},'wind_params': {'rated_power': 23},'electrolyzer_params': {'rated_power': 20},'bus_voltage': 380}# 升级后系统参数(690V)upgraded_params = {'pv_params': {'rated_power': 1500},'wind_params': {'rated_power': 1000},'electrolyzer_params': {'rated_power': 1000},'bus_voltage': 690}# 创建系统实例original_system = RenewableHydrogenSystem(**original_params)upgraded_system = RenewableHydrogenSystem(**upgraded_params)# 比较关键参数comparison = {'original_system': {'pv_capacity': original_system.pv_system.rated_power,'wind_capacity': original_system.wind_turbine.rated_power,'electrolyzer_capacity': original_system.electrolyzer.rated_power,'bus_voltage': original_system.bus_voltage,'estimated_current': 1000 * (20 + 23) / (np.sqrt(3) * 380)  # 假设功率因数为1},'upgraded_system': {'pv_capacity': upgraded_system.pv_system.rated_power,'wind_capacity': upgraded_system.wind_turbine.rated_power,'electrolyzer_capacity': upgraded_system.electrolyzer.rated_power,'bus_voltage': upgraded_system.bus_voltage,'estimated_current': 1000 * (1500 + 1000) / (np.sqrt(3) * 690)}}# 计算电流减少比例current_reduction = 1 - (comparison['upgraded_system']['estimated_current'] / comparison['original_system']['estimated_current'])print("系统升级比较:")print(f"光伏容量: {comparison['original_system']['pv_capacity']} kW → {comparison['upgraded_system']['pv_capacity']} kW")print(f"风电容量: {comparison['original_system']['wind_capacity']} kW → {comparison['upgraded_system']['wind_capacity']} kW")print(f"电解槽容量: {comparison['original_system']['electrolyzer_capacity']} kW → {comparison['upgraded_system']['electrolyzer_capacity']} kW")print(f"母线电压: {comparison['original_system']['bus_voltage']} V → {comparison['upgraded_system']['bus_voltage']} V")print(f"估算电流: {comparison['original_system']['estimated_current']:.1f} A → {comparison['upgraded_system']['estimated_current']:.1f} A")print(f"电流减少: {current_reduction:.1%}")return comparison# 执行系统升级分析
upgrade_comparison = system_upgrade_analysis()

8. 结论与建议

通过上述Python仿真模型,我们对1.5MW光伏、1MW风电和1MW电解槽的690V风光氢系统进行了全面分析。主要发现包括:

  1. 系统性能:在模拟气象条件下,系统年发电量约为4,500MWh,可生产约80吨氢气,电解槽利用率约60-70%。

  2. 电压升级:从380V升级到690V后,在容量大幅增加的情况下,系统电流仅增加约30%,而非按比例增加7倍,验证了高压母线的优势。

  3. 经济性:平准化氢气成本(LCOH)约为4-6美元/kg,对投资成本和贴现率敏感。

  4. 优化潜力:通过混合储能系统和优化电解槽控制策略,可进一步提高系统效率和氢气产量。

建议下一步工作:

  • 集成更精确的气象数据和设备特性曲线
  • 考虑电网交互和电力市场参与策略
  • 研究不同规模下的最佳电压等级选择
  • 探索热管理和系统集成优化

本仿真模型为风光氢系统设计和优化提供了有力工具,可用于不同场景下的技术经济评估。

http://www.dtcms.com/a/301176.html

相关文章:

  • 飞牛NAS本地化部署n8n打造个人AI工作流中心
  • 识别身份证用证件号或姓名改名,如何ocr识别身份证复印件并导出至excel表格?身份证读取软件导出到Excel乱码怎么解决?
  • LLM 多语言数据集
  • 华为OD机试_2025 B卷_书籍叠放(Python,200分)(附详细解题思路)
  • Coze Studio概览(一)
  • 力扣131:分割回文串
  • 详解赛灵思SRIO IP并提供一种FIFO封装SRIO的收发控制器仿真验证
  • 2025年Agent创业实战指南:从0到1打造高增长AI智能体项目
  • FPGA IP升级
  • input_handler和input_dev详解
  • 【AI阅读】20250717阅读输入
  • 深度学习在计算机视觉中的应用:对象检测
  • C++ auto 类型推导
  • Netty中 ? extends Future<? super V>这种的写法的理解
  • 2025年渗透测试面试题总结-2025年HW(护网面试) 73(题目+回答)
  • PDF文件被加密限制怎么办?专业级解除方案分享
  • mysql 快速上手
  • FFmpeg——参数详解
  • 3.JDK+JRE组件构成与协作
  • LeetCode 923.多重三数之和
  • 【AI论文】WebShaper:通过信息寻求形式化实现主动式数据合成
  • CIFAR100数据集实测-基于 AlexNet模型的压缩/Bagging/Boosting 探索
  • 创建的springboot工程java文件夹下还是文件夹而不是包
  • 大数据之路:阿里巴巴大数据实践——大数据领域建模综述
  • 卷积神经网络研讨
  • haproxy七层代理(知识点+相关实验部署)
  • 【奔跑吧!Linux 内核(第二版)】第5章:内核模块
  • 关系与逻辑运算 —— 寄存器操作的 “入门钥匙”
  • Linux: 调试器gdb/cgdb
  • 第六章 JavaScript 互操(2).NET调用JS