当前位置: 首页 > news >正文

什么是 ELK/Grafana

ELK

Data Flow in ELK Stack: Logstash (Collect & Transform) → Elasticsearch (Store & Search) → Kibana (Visualize)

Elasticsearch

Explore Elasticsearch Query DSL

What is Elasticsearch?

Elastic (formerly Elasticsearch) is a suite of open-source tools for search, analytics, and data visualization, built around the core Elasticsearch engine. It’s widely used for:

  • Full-text search: like Google for your data.
  • Log and metric analysis: centralized logging with the ELK Stack.
  • Business analytics: dashboard, trends, machine learning.

Elasticsearch enables you to build powerful search experiences for websites, applications, and enterprise data using Elastic’s unified platform.

How to use Elasticsearch?

GET /_search
{"query": {"bool": {"must": [{ "match": { "title":   "Search"        }},{ "match": { "content": "Elasticsearch" }}],"filter": [{ "term":  { "status": "published" }},{ "range": { "publish_date": { "gte": "2015-01-01" }}}]}}
}
  • Elasticsearch’s native interface is HTTP-based, and requests/responses are typically in JSON.
  • Elasticsearch provides official clients for multiple languages, which handle JSON internally.
  • Tools with non-json interfaces: Kibana query language(KQL), SQL(not natively) interface, command line tools.
  • Graphical interfaces: Kibana dev tools, elastic search head(plugin).
  • ETL tools: Logstash, beats.

Logstash

Try the Logstash Quick Start

What is Logstash?

Logstash is an open-source data processing pipeline tool developed by Elastic. It ingests, transforms, and ships data from various sources (logs, databases, APIs) to destinations like Elasticsearch, databases, or cloud storage.

How to use Logstashs?

A Logstashs pipeline has 3 stages: Input → Filter → Output.
Example config file (logstash.conf):

input {file {path => "/var/log/nginx/access.log"  # Read Nginx logsstart_position => "beginning"}
}filter {grok {match => { "message" => "%{COMBINEDAPACHELOG}" }  # Parse log format}date {match => [ "timestamp", "dd/MMM/yyyy:HH:mm:ss Z" ]  # Fix timestamp}
}output {elasticsearch {hosts => ["http://localhost:9200"]  # Send to Elasticsearchindex => "nginx-logs-%{+YYYY.MM.dd}"}
}

Kibana

  • Experiment with KQL for faster searches
  • Try the Kibana Demo (preloaded with sample data).

What is Kibana?

Kibana is the visualization and management UI for the Elastic Stack.

Kibana vs. Kusto

  • Kusto KQL: Used in Microsoft’s ecosystem (Azure). Kusto is a cloud-based data analytics engine by MS (Azure Data Explorer).
  • Kibana KQL: Used in Elastic’s ecosystem (Kibana). Kibana is a visualization/dashboard tool for Elasticsearch (part for ELK stack).

How to use Kibana?

  • Follow the Kibana Quick Start

Grafana

Explore Grafana Labs Tutorials

What is Grafana?

Grafana is an open-source dashboard and visualization tool designed for monitor and analyzing time-series data. It connect to multiple data sources (like Elasticsearsh, MySQL, stc.) and lets you to create interactive dashboards with charts, graphs, and alerts.

Grafana vs. Kibana

  • Grafana is better for time-series metrics. e.g. infrastructure monitoring (CPU, network)
  • Kibana excels at log exploration.
Logs → Logstash/Beats → Elasticsearch → Kibana (logs)  
Metrics → Prometheus → Grafana (metrics)  

How to use Grafana?

Try the Grafana Playground (pre-built demos).

http://www.dtcms.com/a/289254.html

相关文章:

  • Cosmos:构建下一代互联网的“区块链互联网
  • roboflow使用教程
  • GaussDB 数据库架构师修炼(七) 安全规划
  • C51单片机学习笔记——定时器与中断
  • Image Processing 【Normlize和DeNormlize】
  • 【Linux】3. Shell语言
  • Oracle触发器:数据世界的“隐形守护者“
  • EXPLAIN 用法详解(表格)
  • 数据结构-线性表顺序表示
  • 【Linux内核模块】导出符号详解:模块间的“资源共享”机制
  • 子查询转连接查询
  • 30天打牢数模基础-模糊综合评价讲解
  • Vue基础(21)_Vue生命周期
  • 【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts) 视频教程 - 用户注册实现
  • 《拆解WebRTC:NAT穿透的探测逻辑与中继方案》
  • 力扣49:字母异形词分组
  • 处理Electron Builder 创建新进程错误 spawn ENOMEM
  • 下载win10的方法
  • 构建一个简单的Java框架来测量并发执行任务的时间
  • Linux安装jdk和maven教程
  • 论文解读:基于时域相干累积的UWB Radar 生命体征检测
  • PyTorch里的张量及张量的操作
  • The FastMCP Client
  • 反欺诈业务 Elasticsearch 分页与导出问题分析及解决方案
  • Kotlin函数式接口
  • 第六章 提炼:萃取本质--创建第二大脑读书笔记
  • 【esp32s3】4 - 从零开始入门 MQTT
  • Selenium 处理动态网页与等待机制详解
  • 谷歌开源项目MCP Toolbox for Databases实操:Docker一键部署与配置指南
  • zabbix服务器告警处理