当前位置: 首页 > news >正文

文本预测和分类任务

核心在于:语言模型通过分类任务的形式,实现对文本统计规律的学习。下面分 3 步拆解:

1. 统计规律:文本中词的共现关系

当我们说 “文本里‘天王盖地虎’经常一起出现”,本质是观察到一个条件概率

  • 在语料中,给定前文 “天王盖地”,下一个词是 “虎” 的概率 P(虎 | 天王盖地) 远高于其他词(比如 “猫”“苹果” 等)。
  • 语言模型的目标,就是估计这个条件概率分布:对任意前文,预测下一个词的概率。

2. 分类任务:把概率估计转化为类别选择

语言模型如何实现上述概率估计?通过分类任务

  • 词汇表中的每个词,被视为一个 “类别”(比如 “虎” 是类别 5,“猫” 是类别 100)。
  • 模型的输出层(如你代码中的 self.projection_layer),将隐藏层特征映射到词汇表大小的维度,每个维度对应一个词的 “得分”。
  • 通过 softmax 将得分转化为概率分布,使得: \(P(w_i | \text{前文}) = \frac{\exp(\text{得分}_i)}{\sum_j \exp(\text{得分}_j)}\)
  • 训练目标:最大化真实词的预测概率(等价于最小化交叉熵损失)。

3. 为什么这是分类?

从数学角度看,分类任务的定义是:

给定输入 x,预测其属于 K 个类别中的哪一个。

在语言模型中:

  • 输入 x:前文的词向量(如 “天王盖地” 的向量表示)。
  • 类别集合:词汇表中的所有词(如 10,000 个词,对应 10,000 个类别)。
  • 预测目标:从 10,000 个类别中选出最可能的下一个词。

因此,预测下一个词的任务,本质上是一个 “从词汇表中选择最可能类别的分类问题”

4. 统计规律与分类的联系

模型通过分类任务学习统计规律的过程:

  1. 训练数据:包含大量 “前文 → 真实下一词” 的样本(如 “天王盖地” → “虎”)。
  2. 模型优化:通过交叉熵损失,迫使模型对 “天王盖地” 的输入,提高 “虎” 对应的类别得分。
  3. 学习结果:模型在训练中发现,“天王盖地” 的向量表示与 “虎” 的类别存在强关联,从而记住这种统计规律。

5. 例子:理解分类过程

假设词汇表只有 3 个词:["猫", "虎", "苹果"],对应类别 ID [0, 1, 2]

  • 当模型看到 “天王盖地”,输出层得分可能是 [-1.2, 3.5, -0.8]
  • 经过 softmax 后,概率分布为 [0.02, 0.97, 0.01]
  • 模型选择概率最高的类别 1(“虎”)作为预测结果。

这就是通过分类任务实现统计规律的量化表达

总结

  • 统计规律是语言的本质特征(词与词的共现关系)。
  • 分类任务是语言模型实现这种规律学习的技术手段(将预测问题转化为类别选择)。
  • 语言模型通过分类损失(如交叉熵),迫使模型学习文本中的统计规律,最终表现为 “能预测下一个词” 的能力。

所以,分类是手段,统计规律是目标,二者通过深度学习模型紧密结合。

相关文章:

  • 语言模型的泛化能力和训练数据依赖性
  • 【项目实训】【项目博客#09】HarmonySmartCodingSystem系统后端智能API检索与代码助手实现(6.2-6.15)
  • python 用正则在response.text中获取<title>标签的内容
  • springboot3-笔记总结
  • SpringBoot入门 springboot模版注入问题
  • 2025最新Nvm安装教程
  • 已知路由表和分组的目的地址求对应的下一跳地址
  • 【Create my OS】6 线程调度
  • RabbitMQ全面学习指南
  • CUDA开发工具整理
  • 技术突破与落地应用:端到端 2.0 时代辅助驾驶TOP10 论文深度拆解系列【第四篇(排名不分先后)】
  • Golang 解大整数乘法
  • LeetCode 高频 SQL 50 题(基础版)【题解】合集
  • 【FreeRTOS-队列集】
  • Python 函数实战指南:提升编程效率的实用技巧
  • 数据结构 排序
  • 手机SIM卡通话中随时插入录音语音片段(Android方案)
  • 微信小程序 路由跳转
  • Velocity提取模板变量
  • ubuntu 22.04 安装部署elasticsearch 7.10.0详细教程
  • 一个网站的建立需要什么/在线数据分析工具
  • 网站的c4d动画是怎么做的/谷歌商店paypal官网下载
  • 淘宝网站的推广方案/百度下载2021新版安装
  • 专门做运动装备的网站/怎么开网店新手入门
  • 网络公司网站报价/aso优化排名推广
  • 深圳做网站500元/夜狼seo