当前位置: 首页 > news >正文

OpenCV种的cv::Mat与Qt种的QImage类型相互转换

一、首先了解cv::Mat结构体

cv::Mat::step与QImage转换有着较大的关系。

step的几个类别区分:

  • step:矩阵第一行元素的字节数
  • step[0]:矩阵第一行元素的字节数
  • step[1]:矩阵中一个元素的字节数
  • step1(0):矩阵中一行有几个通道数
  • step1(1):一个元素有几个通道数(channel())
    cv::Mat cvmat(3, 4, CV_16UC4, cv::Scalar_<uchar>(1, 2, 3, 4));std::cout << cvmat<< std::endl;std::cout << "step:" << cvmat.step << std::endl;std::cout << "step[0]:" << cvmat.step[0] << std::endl;std::cout << "step[1]:" << cvmat.step[1] << std::endl;std::cout << "step1(0):" << cvmat.step1(0) << std::endl;std::cout << "step1(1):" << cvmat.step1(1) << std::endl;

运行结果:

分析:
创建了一个3∗4的16位4通道的矩阵;

每一个元素赋值为1,2,3,4;可以看到生成了3*4*4的矩阵;

因为创建的是16位的,所以每一个通道是2个字节数;

所以一行共有4*4*2=32个字节数,故step和step[0]都为32;

因为一个元素有4个通道,每个通道2个字节,所以1个元素的字节数step[1]为4*2=8;

一行是4个元素,每个元素是4个通道,所以一行的通道数,step1(0)为4*4=16,step1(1)为4;

二、cv::Mat转QImage

代码示例为拷贝转换:

QImage cvMat2QImage(const cv::Mat& mat) 
{if (mat.empty()){return QImage();}QImage image;switch (mat.type()){case CV_8UC1:{image = QImage((const uchar*)(mat.data),mat.cols, mat.rows, mat.step,QImage::Format_Grayscale8);return image.copy();}case CV_8UC2:{mat.convertTo(mat, CV_8UC1);image = QImage((const uchar*)(mat.data),mat.cols, mat.rows, mat.step,QImage::Format_Grayscale8);return image.copy();}case CV_8UC3:{// Copy input Matconst uchar *pSrc = (const uchar*)mat.data;// Create QImage with same dimensions as input MatQImage image(pSrc, mat.cols, mat.rows, mat.step, QImage::Format_RGB888);return image.rgbSwapped();}case CV_8UC4:{// Copy input Matconst uchar *pSrc = (const uchar*)mat.data;// Create QImage with same dimensions as input MatQImage image(pSrc, mat.cols, mat.rows, mat.step, QImage::Format_ARGB32);return image.copy();}case CV_32FC1:{Mat normalize_mat;normalize(mat, normalize_mat, 0, 255, NORM_MINMAX, -1);normalize_mat.convertTo(normalize_mat, CV_8U);const uchar *pSrc = (const uchar*)normalize_mat.data;QImage image(pSrc, normalize_mat.cols, normalize_mat.rows, normalize_mat.step, QImage::Format_Grayscale8);return image.copy();}case CV_32FC3:{Mat normalize_mat;normalize(mat, normalize_mat, 0, 255, NORM_MINMAX,-1);normalize_mat.convertTo(normalize_mat, CV_8U);const uchar *pSrc = (const uchar*)normalize_mat.data;// Create QImage with same dimensions as input MatQImage image(pSrc, normalize_mat.cols, normalize_mat.rows, normalize_mat.step, QImage::Format_RGB888);return image.rgbSwapped();}case CV_64FC1:{Mat normalize_mat;normalize(mat, normalize_mat, 0, 255, NORM_MINMAX, -1);normalize_mat.convertTo(normalize_mat, CV_8U);const uchar *pSrc = (const uchar*)normalize_mat.data;QImage image(pSrc, normalize_mat.cols, normalize_mat.rows, normalize_mat.step, QImage::Format_Grayscale8);return image.copy();}case CV_64FC3:{Mat normalize_mat;normalize(mat, normalize_mat, 0, 255, NORM_MINMAX, -1);normalize_mat.convertTo(normalize_mat, CV_8U);const uchar *pSrc = (const uchar*)normalize_mat.data;// Create QImage with same dimensions as input MatQImage image(pSrc, normalize_mat.cols, normalize_mat.rows, normalize_mat.step, QImage::Format_RGB888);return image.rgbSwapped();}case CV_32SC1:{Mat normalize_mat;normalize(mat, normalize_mat, 0, 255, NORM_MINMAX, -1);normalize_mat.convertTo(normalize_mat, CV_8U);const uchar *pSrc = (const uchar*)normalize_mat.data;QImage image(pSrc, normalize_mat.cols, normalize_mat.rows, normalize_mat.step, QImage::Format_Grayscale8);return image.copy();}case CV_32SC3:{Mat normalize_mat;normalize(mat, normalize_mat, 0, 255, NORM_MINMAX, -1);normalize_mat.convertTo(normalize_mat, CV_8U);const uchar *pSrc = (const uchar*)normalize_mat.data;// Create QImage with same dimensions as input MatQImage image(pSrc, normalize_mat.cols, normalize_mat.rows, normalize_mat.step, QImage::Format_RGB888);return image.rgbSwapped();}case CV_16SC1:{Mat normalize_mat;normalize(mat, normalize_mat, 0, 255, NORM_MINMAX, -1);normalize_mat.convertTo(normalize_mat, CV_8U);const uchar *pSrc = (const uchar*)normalize_mat.data;QImage image(pSrc, normalize_mat.cols, normalize_mat.rows, normalize_mat.step, QImage::Format_Grayscale8);return image.copy();}case CV_16SC3:{Mat normalize_mat;normalize(mat, normalize_mat, 0, 255, NORM_MINMAX, -1);normalize_mat.convertTo(normalize_mat, CV_8U);const uchar *pSrc = (const uchar*)normalize_mat.data;// Create QImage with same dimensions as input MatQImage image(pSrc, normalize_mat.cols, normalize_mat.rows, normalize_mat.step, QImage::Format_RGB888);return image.rgbSwapped();}case CV_8SC1:{//Mat normalize_mat;//normalize(mat, normalize_mat, 0, 255, NORM_MINMAX, -1);mat.convertTo(mat, CV_8U);const uchar *pSrc = (const uchar*)mat.data;QImage image(pSrc, mat.cols, mat.rows, mat.step, QImage::Format_Grayscale8);return image.copy();}case CV_8SC3:{mat.convertTo(mat, CV_8U);const uchar *pSrc = (const uchar*)mat.data;QImage image(pSrc, mat.cols, mat.rows, mat.step, QImage::Format_RGB888);return image.rgbSwapped();}default:mat.convertTo(mat, CV_8UC3);QImage image((const uchar*)mat.data, mat.cols, mat.rows, mat.step, QImage::Format_RGB888);return image.rgbSwapped();return QImage();break;}
}

三、QImage转cv::Mat

示例代码为共享内存转换:

cv::Mat QImage2cvMat(QImage& image)
{cv::Mat mat;//qDebug() << image.format();switch (image.format()){case QImage::Format_ARGB32:mat = cv::Mat(image.height(), image.width(), CV_8UC4, (void*)image.constBits(), image.bytesPerLine());break;case QImage::Format_RGB32:mat = cv::Mat(image.height(), image.width(), CV_8UC3, (void*)image.constBits(), image.bytesPerLine());//cv::cvtColor(mat, mat, CV_BGR2RGB);break;case QImage::Format_ARGB32_Premultiplied:mat = cv::Mat(image.height(), image.width(), CV_8UC4, (void*)image.constBits(), image.bytesPerLine());break;case QImage::Format_RGB888:mat = cv::Mat(image.height(), image.width(), CV_8UC3, (void*)image.constBits(), image.bytesPerLine());//cv::cvtColor(mat, mat, CV_BGR2RGB);break;case QImage::Format_Indexed8:mat = cv::Mat(image.height(), image.width(), CV_8UC1, (void*)image.constBits(), image.bytesPerLine());break;case QImage::Format_Grayscale8:mat = cv::Mat(image.height(), image.width(), CV_8UC1, (void*)image.constBits(), image.bytesPerLine());break;}return mat;
}

相关文章:

  • 汇编语言综合程序设计:子程序、分支与循环深度解析
  • Java中的阻塞队列
  • ResUNet 改进:融合DLKA注意力机制
  • I2C通信讲解
  • React状态管理Context API + useReducer
  • C# ExcelWorksheet 贴图
  • React---day9
  • Docker_Desktop开启k8s
  • BIM Revit教程(十一)如何使用机器学习实现 MEP 布局自动化?
  • Palo Alto Networks Expedition存在命令注入漏洞(CVE-2025-0107)
  • Hadolint:Dockerfile 语法检查与最佳实践验证的终极工具
  • Docker Compose 备忘
  • Neko虚拟浏览器远程协作方案:Docker+内网穿透技术部署实践
  • DASCTF
  • 通信刚需,AI联手ethernet/ip转profinet网关打通工业技术难关
  • BLEU评分:机器翻译质量评估的黄金标准
  • 实时数据仓库是什么?数据仓库设计怎么做?
  • 选 Agent 还是 Workflow?需求导向的深度解析
  • 不等式中的放缩法
  • AnduinOS使用腾讯会议的坑
  • 企业是做app还是做网站/电商seo是指
  • 国外网站不需要备案吗/网络营销10大平台
  • iis7搭建网站教程/百度广告推广怎么收费
  • mac网站建设创建数据库/优化大师电脑版官网
  • 网站数据库是干什么的/新闻发稿
  • 公司个人怎么做网络推广/深圳百度seo培训