不等式中的放缩法
放缩法
总结使用放缩法的常见公式和放缩方式。
常见公式
①删减项放缩: 2 − a < 2 ( a > 0 ) 2-a<2(a>0) 2−a<2(a>0)或 2 + a > 2 ( a > 0 ) 2+a>2(a>0) 2+a>2(a>0),常常针对最终结果删减项放缩。
②指数式放缩: 1 2 n − 1 ≤ 1 2 n − 1 \cfrac{1}{2^n-1}\leq \cfrac{1}{2^{n-1}} 2n−11≤2n−11;常常针对每一项先放缩,这样就和等比数列求和相关,
③平方式放缩:由于 n ( n − 1 ) < n 2 < n ( n + 1 ) n(n-1)<n^2<n(n+1) n(n−1)<n2<n(n+1),由倒数法则得到 1 n ( n + 1 ) < 1 n 2 < 1 n ( n − 1 ) \cfrac{1}{n(n+1)}<\cfrac{1}{n^2}<\cfrac{1}{n(n-1)} n(n+1)1<n21<n(n−1)1;
从而得到 1 n − 1 n + 1 = 1 n ( n + 1 ) < 1 n 2 < 1 n ( n − 1 ) = 1 n − 1 n − 1 \cfrac{1}{n}-\cfrac{1}{n+1}=\cfrac{1}{n(n+1)}<\cfrac{1}{n^2}<\cfrac{1}{n(n-1)}=\cfrac{1}{n}-\cfrac{1}{n-1} n1−n+11=n(n+1)1<n21<n(n−1)1=n1−n−11
常常针对每一项先放缩,和裂项相消法关联。
④平方式放缩: 1 n 2 < 1 n 2 − 1 = 1 2 ( 1 n − 1 − 1 n + 1 ) \cfrac{1}{n^2}<\cfrac{1}{n^2-1}=\cfrac{1}{2}(\cfrac{1}{n-1}-\cfrac{1}{n+1}) n21<n2−11=21(n−11−n+11),常针对每一项先放缩,和裂项相消法关联。
⑤根式放缩: 2 ( n + 1 − n ) < 1 n < 2 ( n − n − 1 ) 2(\sqrt{n+1}-\sqrt{n})<\cfrac{1}{\sqrt{n}}<2(\sqrt{n}-\sqrt{n-1}) 2(n+1−n)<n1<2(n−n−1),常常针对每一项先放缩,和裂项相消法关联。
⑥利用 ( 1 + x ) n (1+x)^n (1+x)n的二项展开式进行放缩。对展开式的结果删减项放缩。
放缩模式
①先求和后放缩;利用等差、等比先求得结果,再针对结果通过删减项放缩;
②先放缩后求和;先利用放缩公式对每一项放缩,然后利用等差、等比求和公式或裂项相消求和或累加法求和。
③先放缩后求和再放缩;前两个模式的综合。
④相关方法:裂项求和法,等差数列求和公式,等比数列求和公式,累加法,累乘法,不等式,
典例剖析
例1、【2019年高考数学试卷理科新课标Ⅱ第19题改编】已知数列 { a n } \{a_n\} {an} 和数列 { b n } \{b_n\} {bn} 满足 a 1 = 1 a_1=1 a1=1, b 1 = 0 b_1=0 b1=0, 4 a n + 1 = 3 a n − b n + 4 4a_{n+1}=3a_n-b_n+4 4an+1=3an−bn+4, 4 b n + 1 = 3 b n − a n − 4 4b_{n+1}=3b_n-a_n-4 4bn+1=3bn−an−4, n ∈ N ∗ n\in N^{*} n∈N∗
(1).求 { a n } \{a_n\} {an} 和 { b n } \{b_n\} {bn} 的通项公式;
解析:由题设可知 4 a n + 1 = 3 a n − b n + 4 4a_{n+1}=3a_n-b_n+4 4an+1=3an−bn+4①, 4 b n + 1 = 3 b n − a n − 4 4b_{n+1}=3b_n-a_n-4 4bn+1=3bn−an−4②,
由①+②得到, 4 ( a n + 1 + b n + 1 ) = 2 ( a n + b n ) 4(a_{n+1}+b_{n+1})=2(a_n+b_n) 4(an+1+bn+1)=2(an+bn);即 a n + 1 + b n + 1 = 1 2 ( a n + b n ) a_{n+1}+b_{n+1}=\cfrac{1}{2}(a_n+b_n) an+1+bn+1=21(an+bn);
又由于 a 1 + b 1 = 1 ≠ 0 a_1+b_1=1\neq 0 a1+b1=1=0,所以数列 { a n + b n } \{a_n+b_n\} {an+bn}是首项为 1 1 1,公比为 1 2 \cfrac{1}{2} 21的等比数列;
则 a n + b n = 1 × ( 1 2 ) n − 1 = 1 2 n − 1 a_n+b_n=1\times (\cfrac{1}{2})^{n-1}=\cfrac{1}{2^{n-1}} an+bn=1×(21)n−1=2n−11③,
由①-②得到, 4 ( a n + 1 − b n + 1 ) = 4 ( a n − b n ) + 8 4(a_{n+1}-b_{n+1})=4(a_n-b_n)+8 4(an+1−bn+1)=4(an−bn)+8;即 a n + 1 − b n + 1 = a n − b n + 2 a_{n+1}-b_{n+1}=a_n-b_n+2 an+1−bn+1=an−bn+2;
又由于 a 1 − b 1 = 1 a_1-b_1=1 a1−b1=1,所以数列 { a n − b n } \{a_n-b_n\} {an−bn}是首项为 1 1 1,公差为 2 2 2的等差数列;
则 a n − b n = 1 + ( n − 1 ) × 2 = 2 n − 1 a_n-b_n=1+(n-1)\times 2=2n-1 an−bn=1+(n−1)×2=2n−1④;
由③+④,变形整理得到, a n = 1 2 n + n − 1 2 a_n=\cfrac{1}{2^n}+n-\cfrac{1}{2} an=2n1+n−21, n ∈ N ∗ n\in N^* n∈N∗;
由③-④,变形整理得到, b n = 1 2 n − n + 1 2 b_n=\cfrac{1}{2^n}-n+\cfrac{1}{2} bn=2n1−n+21, n ∈ N ∗ n\in N^* n∈N∗;
(2). 设数列 { a n } \{a_n\} {an} 的前 n n n 项和为 S n S_n Sn,证明: 1 S 1 + a 1 + 1 S 2 + a 2 + 1 S 3 + a 3 + ⋯ + 1 S n + a n < 2 \cfrac{1}{S_1+a_1}+\cfrac{1}{S_2+a_2}+\cfrac{1}{S_3+a_3}+\cdots+\cfrac{1}{S_n+a_n}<2 S1+a11+S2+a21+S3+a31+⋯+Sn+an1<2.
解析:由于 数列 { a n } \{a_n\} {an} 的前 n n n 项和为 S n S_n Sn, a n = 1 2 n + n − 1 2 = 1 2 n + 2 n − 1 2 a_n=\cfrac{1}{2^n}+n-\cfrac{1}{2}=\cfrac{1}{2^n}+\cfrac{2n-1}{2} an=2n1+n−21=2n1+22n−1,
则 S n = 1 2 ( 1 + 3 + ⋯ + 2 n − 1 ) + ( 1 2 + 1 2 2 + ⋯ + 1 2 n ) S_n=\cfrac{1}{2}(1+3+\cdots+2n-1)+(\cfrac{1}{2}+\cfrac{1}{2^2}+\cdots+\cfrac{1}{2^n}) Sn=21(1+3+⋯+2n−1)+(21+221+⋯+2n1)
= n 2 2 + 1 2 ( 1 − 1 2 n ) 1 − 1 2 = n 2 2 + 1 − ( 1 2 ) n =\cfrac{n^2}{2}+\cfrac{\frac{1}{2}(1-\cfrac{1}{2^n})}{1-\frac{1}{2}}=\cfrac{n^2}{2}+1-(\cfrac{1}{2})^n =2n2+1−2121(1−2n1)=2n2+1−(21)n
则 S n + a n = n 2 2 + 1 − ( 1 2 ) n + 1 2 n + 2 n − 1 2 = ( n + 1 ) 2 2 S_n+a_n=\cfrac{n^2}{2}+1-(\cfrac{1}{2})^n+\cfrac{1}{2^n}+\cfrac{2n-1}{2}=\cfrac{(n+1)^2}{2} Sn+an=2n2+1−(21)n+2n1+22n−1=2(n+1)2
所以 1 S n + a n = 2 ( n + 1 ) 2 < 2 n ( n + 1 ) = 2 ( 1 n − 1 n + 1 ) \cfrac{1}{S_n+a_n}=\cfrac{2}{(n+1)^2}<\cfrac{2}{n(n+1)}=2(\cfrac{1}{n}-\cfrac{1}{n+1}) Sn+an1=(n+1)22<n(n+1)2=2(n1−n+11)
解释:由于 n 2 n^2 n2 + + + 2 n 2n 2n + + + 1 1 1 > > > n 2 n^2 n2 + + + n n n,故 2 n 2 + 2 n + 1 \frac{2}{n^2+2n+1} n2+2n+12 < < < 2 n ( n + 1 ) \frac{2}{n(n+1)} n(n+1)2
所以 1 S 1 + a 1 + 1 S 2 + a 2 + 1 S 3 + a 3 + ⋯ + 1 S n + a n \cfrac{1}{S_1+a_1}+\cfrac{1}{S_2+a_2}+\cfrac{1}{S_3+a_3}+\cdots+\cfrac{1}{S_n+a_n} S1+a11+S2+a21+S3+a31+⋯+Sn+an1
< 2 [ ( 1 1 − 1 2 ) + ( 1 2 − 1 3 ) + ( 1 3 − 1 4 ) + ⋯ + ( 1 n − 1 n + 1 ) ] <2[(\cfrac{1}{1}-\cfrac{1}{2})+(\cfrac{1}{2}-\cfrac{1}{3})+(\cfrac{1}{3}-\cfrac{1}{4})+\cdots+(\cfrac{1}{n}-\cfrac{1}{n+1})] <2[(11−21)+(21−31)+(31−41)+⋯+(n1−n+11)] [逐项放缩再求和]
= 2 ( 1 1 − 1 n + 1 ) < 2 =2(\cfrac{1}{1}-\cfrac{1}{n+1})<2 =2(11−n+11)<2
例2、【2017宝鸡中学第一次月考第21题改编】已知函数满足 f ( n ) − f ( n − 1 ) = 4 ( n − 1 ) f(n)-f(n-1)=4(n-1) f(n)−f(n−1)=4(n−1), n ∈ N ∗ n\in N^* n∈N∗,且 f ( 0 ) = 1 f(0)=1 f(0)=1;
①求 f ( n ) f(n) f(n)的表达式;
分析:如果能意识到 a n = f ( n ) a_n=f(n) an=f(n),则应该想到用累加法求解,得到 f ( n ) = 2 n 2 − 2 n + 1 f(n)=2n^2-2n+1 f(n)=2n2−2n+1
②求证: 1 f ( 1 ) + 1 f ( 2 ) + 1 f ( 3 ) + ⋯ + 1 f ( n ) < 3 2 \cfrac{1}{f(1)}+\cfrac{1}{f(2)}+\cfrac{1}{f(3)}+\cdots+\cfrac{1}{f(n)}<\cfrac{3}{2} f(1)1+f(2)1+f(3)1+⋯+f(n)1<23;
证明:由于 1 f ( n ) = 1 2 n 2 − 2 n + 1 < 1 2 n 2 − 2 n = 1 2 ( 1 n − 1 − 1 n ) \cfrac{1}{f(n)}=\cfrac{1}{2n^2-2n+1}<\cfrac{1}{2n^2-2n}=\cfrac{1}{2}(\cfrac{1}{n-1}-\cfrac{1}{n}) f(n)1=2n2−2n+11<2n2−2n1=21(n−11−n1)
第一项保持不动, 1 f ( 1 ) = 1 \cfrac{1}{f(1)}=1 f(1)1=1,
1 f ( 2 ) < 1 2 ( 1 1 − 1 2 ) \cfrac{1}{f(2)}<\cfrac{1}{2}(\cfrac{1}{1}-\cfrac{1}{2}) f(2)1<21(11−21);
1 f ( 3 ) < 1 2 ( 1 2 − 1 3 ) \cfrac{1}{f(3)}<\cfrac{1}{2}(\cfrac{1}{2}-\cfrac{1}{3}) f(3)1<21(21−31);
⋯ \cdots ⋯
1 f ( n ) < 1 2 ( 1 n − 1 − 1 n ) \cfrac{1}{f(n)}<\cfrac{1}{2}(\cfrac{1}{n-1}-\cfrac{1}{n}) f(n)1<21(n−11−n1);
故 1 f ( 1 ) + 1 f ( 2 ) + 1 f ( 3 ) + ⋯ + 1 f ( n ) \cfrac{1}{f(1)}+\cfrac{1}{f(2)}+\cfrac{1}{f(3)}+\cdots+\cfrac{1}{f(n)} f(1)1+f(2)1+f(3)1+⋯+f(n)1
= 1 + 1 2 [ ( 1 − 1 2 ) + ( 1 2 − 1 3 ) + ⋯ + ( 1 n − 1 − 1 n ) ] =1+\cfrac{1}{2}[(1-\cfrac{1}{2})+(\cfrac{1}{2}-\cfrac{1}{3})+\cdots+(\cfrac{1}{n-1}-\cfrac{1}{n})] =1+21[(1−21)+(21−31)+⋯+(n−11−n1)]
= 1 + 1 2 ( 1 − 1 n ) = 3 2 − 1 2 n < 3 2 =1+\cfrac{1}{2}(1-\cfrac{1}{n})=\cfrac{3}{2}-\cfrac{1}{2n}<\cfrac{3}{2} =1+21(1−n1)=23−2n1<23;
例3、【2017全国卷2,理科第15题高考真题改编】已知等差数列 { a n } \{a_n\} {an}的前 n n n项和为 S n S_n Sn, a 3 = 3 , S 4 = 10 a_3=3,S_4=10 a3=3,S4=10,数列 { 1 S n } \{\cfrac{1}{S_n}\} {Sn1}的前 n n n项和为 T n = ∑ k = 1 n 1 S k T_n=\sum\limits_{k=1}^n{ \cfrac{1}{S_k}} Tn=k=1∑nSk1,证明: 1 ≤ T n < 2 1\leq T_n<2 1≤Tn<2
分析:由 a 1 + 2 d = 3 a_1+2d=3 a1+2d=3和 4 a 1 + 6 d = 10 4a_1+6d=10 4a1+6d=10,
容易计算出 a n = n a_n=n an=n,故 S n = n ( n + 1 ) 2 S_n=\cfrac{n(n+1)}{2} Sn=2n(n+1),
则有 1 S n = 2 n ( n + 1 ) = 2 ( 1 n − 1 n + 1 ) > 0 \cfrac{1}{S_n}=\cfrac{2}{n(n+1)}=2(\cfrac{1}{n}-\cfrac{1}{n+1})>0 Sn1=n(n+1)2=2(n1−n+11)>0,
故 ∑ k = 1 n 1 S k = 2 [ ( 1 − 1 2 ) + ( 1 2 − 1 3 ) + ⋯ + ( 1 n − 1 n + 1 ) ] \sum\limits_{k=1}^n {\cfrac{1}{S_k}}=2[(1-\cfrac{1}{2})+(\cfrac{1}{2}-\cfrac{1}{3})+\cdots +(\cfrac{1}{n}-\cfrac{1}{n+1})] k=1∑nSk1=2[(1−21)+(21−31)+⋯+(n1−n+11)]
= 2 ( 1 − 1 n + 1 ) < 2 =2(1-\cfrac{1}{n+1})<2 =2(1−n+11)<2。
又由于 1 S n = 2 n ( n + 1 ) > 0 \cfrac{1}{S_n}=\cfrac{2}{n(n+1)}>0 Sn1=n(n+1)2>0,故数列 { 1 S n } \{\cfrac{1}{S_n}\} {Sn1}的前 n n n项和 T N T_N TN单调递增,
故 T n ≥ T 1 = 1 T_n\ge T_1=1 Tn≥T1=1,故 1 ≤ T n < 2 1\leq T_n<2 1≤Tn<2
解后反思:
1、本题目先求和后放缩的证明模式,高考考查的重点。
2、这类题目的求和方法常常和裂项相消法关联;
3、利用的放缩原理:左边界利用单调性,右边界利用放缩法。
例4、【改编】设数列 { a n } \{a_n\} {an}的通项公式为 a n = 1 2 n − 1 a_n=\cfrac{1}{2^n-1} an=2n−11,其前 n n n项和为 S n S_n Sn,求证: 1 ≤ S n < 2 1\leq S_n<2 1≤Sn<2;
证明:由于 2 n − 1 ≥ 2 n − 1 2^n-1\ge 2^{n-1} 2n−1≥2n−1(当 n = 1 n=1 n=1时取等号,其他都取大于号)
故 a n = 1 2 n − 1 ≤ 1 2 n − 1 a_n=\cfrac{1}{2^n-1}\leq \cfrac{1}{2^{n-1}} an=2n−11≤2n−11(当 n = 1 n=1 n=1时取等号,其他都取大于号) 即
a 1 = 1 a_1=1 a1=1
a 2 < 1 2 1 a_2<\cfrac{1}{2^1} a2<211
a 3 < 1 2 2 a_3<\cfrac{1}{2^2} a3<221
⋯ \cdots ⋯
a n < 1 2 n − 1 a_n<\cfrac{1}{2^{n-1}} an<2n−11
故 S n = a 1 + a 2 + ⋯ + a n S_n=a_1+a_2+\cdots+a_n Sn=a1+a2+⋯+an
< 1 + 1 2 1 + 1 2 2 + ⋯ + 1 2 n − 1 <1+\cfrac{1}{2^1}+\cfrac{1}{2^2}+\cdots+\cfrac{1}{2^{n-1}} <1+211+221+⋯+2n−11
= 1 ⋅ ( 1 − 1 2 n ) 1 − 1 2 =\cfrac{1\cdot(1-\cfrac{1}{2^n})}{1-\cfrac{1}{2}} =1−211⋅(1−2n1)
= 2 ( 1 − 1 2 n ) < 2 =2(1-\cfrac{1}{2^n})<2 =2(1−2n1)<2,即 S n < 2 S_n<2 Sn<2。
又 a n > 0 a_n>0 an>0,则 { S n } \{S_n\} {Sn}单调递增,故 S n ≥ S 1 = a 1 = 1 S_n\ge S_1=a_1=1 Sn≥S1=a1=1,
故 1 ≤ S n < 2 1\leq S_n<2 1≤Sn<2;
解后反思:
1、本题目需要先将每一项恰当放缩,然后利用等比数列求和公式求和,再利用放缩法证明不等式;先放缩后求和的证明模式,高考考查的次重点;
2、这类题目的难点在于第一步,到底怎样的放缩是恰当的,这需要一定的数学素养;
例5、【2015 ⋅ \cdot ⋅高考安徽卷】设 n ∈ N ∗ n\in N^* n∈N∗, x n x_n xn是曲线 y = x 2 n + 2 + 1 y=x^{2n+2}+1 y=x2n+2+1在点 ( 1 , 2 ) (1,2) (1,2)处的切线与 x x x轴交点的横坐标。
(1)、求数列 { x n } \{x_n\} {xn}的通项公式。
分析: y ′ = ( x 2 n + 2 + 1 ) ′ = ( 2 n + 2 ) x 2 n + 1 y'=(x^{2n+2}+1)'=(2n+2)x^{2n+1} y′=(x2n+2+1)′=(2n+2)x2n+1,
则曲线 y = x 2 n + 2 + 1 y=x^{2n+2}+1 y=x2n+2+1在点 ( 1 , 2 ) (1,2) (1,2)处的切线斜率为 2 n + 2 2n+2 2n+2,
从而切线方程为 y − 2 = ( 2 n + 2 ) ( x − 1 ) y-2=(2n+2)(x-1) y−2=(2n+2)(x−1),令 y = 0 y=0 y=0,
解得切线与 x x x轴交点的横坐标 x n = 1 − 1 n + 1 = n n + 1 x_n=1-\cfrac{1}{n+1}=\cfrac{n}{n+1} xn=1−n+11=n+1n,
所以数列 { x n } \{x_n\} {xn}的通项公式为 x n = n n + 1 x_n=\cfrac{n}{n+1} xn=n+1n。
(2)、记 T n = x 1 2 x 3 2 ⋯ x 2 n − 1 2 T_n=x_1^2x_3^2\cdots x_{2n-1}^2 Tn=x12x32⋯x2n−12,证明: T n ≥ 1 4 n T_n\ge \cfrac{1}{4n} Tn≥4n1。
分析:由题设和(1)中的计算结果可知,
T n = x 1 2 x 3 2 ⋯ x 2 n − 1 2 = ( 1 2 ) 2 ⋅ ( 3 4 ) 2 ⋯ ( 2 n − 1 2 n ) 2 T_n=x_1^2x_3^2\cdots x_{2n-1}^2=(\cfrac{1}{2})^2\cdot (\cfrac{3}{4})^2\cdots (\cfrac{2n-1}{2n})^2 Tn=x12x32⋯x2n−12=(21)2⋅(43)2⋯(2n2n−1)2,
当 n = 1 n=1 n=1时, T 1 = 1 4 T_1=\cfrac{1}{4} T1=41;
当 n ≥ 2 n\ge 2 n≥2时,由于 x 2 n − 1 2 = ( 2 n − 1 2 n ) 2 = ( 2 n − 1 ) 2 ( 2 n ) 2 x_{2n-1}^2=(\cfrac{2n-1}{2n})^2=\cfrac{(2n-1)^2}{(2n)^2} x2n−12=(2n2n−1)2=(2n)2(2n−1)2
> ( 2 n − 1 ) 2 − 1 ( 2 n ) 2 = 2 n − 2 2 n = n − 1 n >\cfrac{(2n-1)^2-1}{(2n)^2}=\cfrac{2n-2}{2n}=\cfrac{n-1}{n} >(2n)2(2n−1)2−1=2n2n−2=nn−1;
所以, T n > ( 1 2 ) 2 × 1 2 × 2 3 × ⋯ n − 1 n = 1 4 n T_n>(\cfrac{1}{2})^2\times \cfrac{1}{2}\times \cfrac{2}{3}\times \cdots \cfrac{n-1}{n}=\cfrac{1}{4n} Tn>(21)2×21×32×⋯nn−1=4n1;
综上可知,对任意的 n ∈ N ∗ n\in N^* n∈N∗,均有 T n ≥ 1 4 n T_n\ge \cfrac{1}{4n} Tn≥4n1。
例6、求证: 2 < ( 1 + 1 n ) n < 3 2<(1+\cfrac{1}{n})^n<3 2<(1+n1)n<3,其中 n ∈ N ∗ n\in N^* n∈N∗, n ≥ 2 n\ge 2 n≥2。
分析:由二项展开式可知
( 1 + 1 n ) n = 1 + C n 1 ⋅ 1 n + C n 2 ⋅ 1 n 2 + ⋯ + C n n ⋅ 1 n n (1+\cfrac{1}{n})^n=1+C_n^1\cdot \cfrac{1}{n}+C_n^2\cdot \cfrac{1}{n^2}+\cdots+C_n^n\cdot \cfrac{1}{n^n} (1+n1)n=1+Cn1⋅n1+Cn2⋅n21+⋯+Cnn⋅nn1
由于各项均为正数,且 n ∈ N ∗ n\in N^* n∈N∗,删减项放缩法得到,
则 ( 1 + 1 n ) n > 1 + C n 1 ⋅ 1 n = 2 (1+\cfrac{1}{n})^n>1+C_n^1\cdot \cfrac{1}{n}=2 (1+n1)n>1+Cn1⋅n1=2;
又由于 ( 1 + 1 n ) n = 1 + C n 1 ⋅ 1 n + C n 2 ⋅ 1 n 2 + ⋯ + C n n ⋅ 1 n n (1+\cfrac{1}{n})^n=1+C_n^1\cdot \cfrac{1}{n}+C_n^2\cdot \cfrac{1}{n^2}+\cdots+C_n^n\cdot \cfrac{1}{n^n} (1+n1)n=1+Cn1⋅n1+Cn2⋅n21+⋯+Cnn⋅nn1
= 1 + 1 + 1 2 ! ⋅ n − 1 n + 1 3 ! ⋅ ( n − 1 ) ( n − 2 ) n 2 + ⋯ + 1 n ! ⋅ ( n − 1 ) × ( n − 2 ) × ⋯ × 2 × 1 n n − 1 =1+1+\cfrac{1}{2!}\cdot \cfrac{n-1}{n}+\cfrac{1}{3!}\cdot \cfrac{(n-1)(n-2)}{n^2}+\cdots+\cfrac{1}{n!}\cdot \cfrac{(n-1)\times (n-2)\times \cdots\times 2\times 1}{n^{n-1}} =1+1+2!1⋅nn−1+3!1⋅n2(n−1)(n−2)+⋯+n!1⋅nn−1(n−1)×(n−2)×⋯×2×1
< 1 + 1 + 1 2 ! + 1 3 ! + ⋯ + 1 n ! <1+1+\cfrac{1}{2!}+\cfrac{1}{3!}+\cdots +\cfrac{1}{n!} <1+1+2!1+3!1+⋯+n!1
< 1 + 1 + 1 2 + 1 2 2 + ⋯ + 1 2 n − 1 <1+1+\cfrac{1}{2}+\cfrac{1}{2^2}+\cdots +\cfrac{1}{2^{n-1}} <1+1+21+221+⋯+2n−11
$=1+\cfrac{1-\cfrac{1}{2^n}}{1-\cfrac{1}{2}} $
= 3 − 1 2 n − 1 < 3 =3-\cfrac{1}{2^{n-1}}<3 =3−2n−11<3,
故 2 < ( 1 + 1 n ) n < 3 2<(1+\cfrac{1}{n})^n<3 2<(1+n1)n<3,证毕。
反思:也可以考虑使用数学归纳法证明。
例7、【2016衡水金卷】已知函数 f ( x ) = l n x − a x 2 f(x)=lnx-ax^2 f(x)=lnx−ax2,且函数 f ( x ) f(x) f(x)在点 ( 2 , f ( 2 ) ) (2,f(2)) (2,f(2))处的切线的一个方向向量是 ( 2 , − 3 ) (2,-3) (2,−3).
(1)若关于 x x x的方程 f ( x ) + 3 2 x 2 = 3 x − b f(x)+\cfrac{3}{2}x^2=3x-b f(x)+23x2=3x−b在区间 [ 1 2 , 2 ] [\cfrac{1}{2},2] [21,2]上恰有两个不相等的实数根,求实数 b b b的取值范围。
分析: f ′ ( x ) = 1 x − 2 a x f'(x)=\cfrac{1}{x}-2ax f′(x)=x1−2ax,由函数 f ( x ) f(x) f(x)在点 ( 2 , f ( 2 ) ) (2,f(2)) (2,f(2))处的切线的一个方向向量是 ( 2 , − 3 ) (2,-3) (2,−3),
即 f ′ ( 2 ) = 1 2 − 4 a = − 3 2 f'(2)=\cfrac{1}{2}-4a=-\cfrac{3}{2} f′(2)=21−4a=−23,解得 a = 1 2 a=\cfrac{1}{2} a=21,方程 f ( x ) + 3 2 x 2 = 3 x − b f(x)+\cfrac{3}{2}x^2=3x-b f(x)+23x2=3x−b变形为 l n x + x 2 − 3 x = − b lnx+x^2-3x=-b lnx+x2−3x=−b,
令 g ( x ) = l n x + x 2 − 3 x g(x)=lnx+x^2-3x g(x)=lnx+x2−3x, h ( x ) = − b h(x)=-b h(x)=−b。 g ′ ( x ) = ( 2 x − 1 ) ( x − 1 ) x g'(x)=\cfrac{(2x-1)(x-1)}{x} g′(x)=x(2x−1)(x−1),
故函数 g ( x ) g(x) g(x)在 ( 1 2 , 1 ) (\cfrac{1}{2},1) (21,1)上单调递减,在 ( 1 , 2 ) (1,2) (1,2)上单调递增,
又 g ( 1 2 ) = − l n 2 − 5 4 g(\cfrac{1}{2})=-ln2-\cfrac{5}{4} g(21)=−ln2−45, g ( 1 ) = − 2 g(1)=-2 g(1)=−2, g ( 2 ) = l n 2 − 2 g(2)=ln2-2 g(2)=ln2−2,
又 g ( 1 2 ) − g ( 2 ) = − 2 l n 2 + 3 4 < 0 g(\cfrac{1}{2})-g(2)=-2ln2+\cfrac{3}{4}<0 g(21)−g(2)=−2ln2+43<0,
故 g ( 1 2 ) < g ( 2 ) g(\cfrac{1}{2})<g(2) g(21)<g(2),在同一坐标系中作出函数 g ( x ) g(x) g(x)和 h ( x ) h(x) h(x)的大致图像如右,
由图可知要使两个函数有两个交点,则 − 2 < − b ≤ − l n 2 − 5 4 -2<-b\leq -ln2-\cfrac{5}{4} −2<−b≤−ln2−45,
即 l n 2 + 5 4 ≤ b < 2 ln2+\cfrac{5}{4}\leq b<2 ln2+45≤b<2,故 b ∈ [ 5 4 + l n 2 , 2 ) b\in [\cfrac{5}{4}+ln2,2) b∈[45+ln2,2)。
(2)证明: ∑ k = 2 n ( 1 1 2 k 2 + f ( k ) ) 2 > n − 1 2 ( n + 1 ) ( n ∈ N ∗ , n ≥ 2 ) \sum\limits_{k=2}^n{(\cfrac{1}{\frac{1}{2}k^2+f(k)})^2}>\cfrac{n-1}{2(n+1)}(n\in N^*,n\ge 2) k=2∑n(21k2+f(k)1)2>2(n+1)n−1(n∈N∗,n≥2)。
证明:由于 f ( k ) = l n k − 1 2 k 2 f(k)=lnk-\cfrac{1}{2}k^2 f(k)=lnk−21k2,则 1 2 k 2 + f ( k ) = l n k \cfrac{1}{2}k^2+f(k)=lnk 21k2+f(k)=lnk,
设 h ( k ) = x − l n x h(k)=x-lnx h(k)=x−lnx,则 h ′ ( x ) = 1 − 1 x = x − 1 x h'(x)=1-\cfrac{1}{x}=\cfrac{x-1}{x} h′(x)=1−x1=xx−1,
当 x > 1 x>1 x>1时, h ′ ( x ) > 0 h'(x)>0 h′(x)>0,故 h ( x ) h(x) h(x)在区间 ( 1 , + ∞ ) (1,+\infty) (1,+∞)上单调递增,
又 h ( 1 ) = 1 > 0 h(1)=1>0 h(1)=1>0, k ≥ 2 k\ge 2 k≥2 ,可得 h ( k ) = k − l n k > 0 h(k)=k-lnk>0 h(k)=k−lnk>0,
即 k > l n k > 0 k>lnk>0 k>lnk>0,故 ( l n k ) 2 < k 2 (lnk)^2<k^2 (lnk)2<k2,则 1 ( l n k ) 2 > 1 k 2 \cfrac{1}{(lnk)^2}>\cfrac{1}{k^2} (lnk)21>k21,
又 1 k 2 > 1 k ( k + 1 ) = 1 k − 1 k + 1 \cfrac{1}{k^2}>\cfrac{1}{k(k+1)}=\cfrac{1}{k}-\cfrac{1}{k+1} k21>k(k+1)1=k1−k+11,
故 ∑ k = 2 n ( 1 1 2 k 2 + f ( k ) ) 2 \sum\limits_{k=2}^n{(\cfrac{1}{\frac{1}{2}k^2+f(k)})^2} k=2∑n(21k2+f(k)1)2
= ( 1 l n 2 ) 2 + ( 1 l n 3 ) 2 + ⋯ + ( 1 l n n ) 2 =(\cfrac{1}{ln2})^2+(\cfrac{1}{ln3})^2+\cdots+(\cfrac{1}{lnn})^2 =(ln21)2+(ln31)2+⋯+(lnn1)2
> 1 2 2 + 1 3 2 + ⋯ + 1 n 2 >\cfrac{1}{2^2}+\cfrac{1}{3^2}+\cdots+\cfrac{1}{n^2} >221+321+⋯+n21
> 1 2 × 3 + 1 3 × 4 + ⋯ + 1 n ( n + 1 ) >\cfrac{1}{2\times3}+\cfrac{1}{3\times4}+\cdots+\cfrac{1}{n(n+1)} >2×31+3×41+⋯+n(n+1)1
= 1 2 − 1 3 + ⋯ + 1 n − 1 n + 1 =\cfrac{1}{2}-\cfrac{1}{3}+\cdots+\cfrac{1}{n}-\cfrac{1}{n+1} =21−31+⋯+n1−n+11
= 1 2 − 1 n + 1 =\cfrac{1}{2}-\cfrac{1}{n+1} =21−n+11
= n − 1 2 ( n + 1 ) ( n ∈ N ∗ , n ≥ 2 ) =\cfrac{n-1}{2(n+1)}(n\in N^*,n\ge 2) =2(n+1)n−1(n∈N∗,n≥2)。