当前位置: 首页 > news >正文

机器学习算法-逻辑回归

今天我们用 「预测考试是否及格」 的例子来讲解逻辑回归,从原理到实现一步步拆解,保证零基础也能懂!

🎯 例子背景

假设你是班主任,要根据学生的「学习时间」预测「是否及格」,手上有以下数据:

学习时间(h)是否及格(1=是,0=否)
10
20
31
41
51

新问题:学习3.5小时的学生,及格概率有多大?


🌟 逻辑回归核心思想

不是直接预测类别,而是计算属于某类的概率
比如:P(及格|学习3.5h) = 70% → 若阈值设50%,则判定为及格

🔑 关键特点
  1. 输出范围在0~1之间(概率)

  2. S型函数(Sigmoid) 将线性结果转为概率


📈 原理分步拆解

1. 先做线性回归

临时计算 z = a×学习时间 + b
(比如初始假设:z = 0.6×时间 - 1.5)

2. 通过Sigmoid函数转概率

公式:
P(及格) = 1 / (1 + e^(-z))

  • 当z=0时,P=0.5

  • z越大,P越接近1;z越小,P越接近0

3. 计算示例

对于学习3.5小时:
z = 0.6×3.5 - 1.5 = 0.6
P = 1 / (1 + e^(-0.6)) ≈ 0.65
→ 及格概率65%


🛠️ Python代码实现

1. 基础版(手写核心逻辑)
import numpy as np# Sigmoid函数
def sigmoid(z):return 1 / (1 + np.exp(-z))# 假设参数
a = 0.6  # 斜率
b = -1.5 # 截距# 预测函数
def predict(hours):z = a * hours + breturn sigmoid(z)print("学习3.5小时及格概率:", predict(3.5))  # 输出: 0.65
2. 实战版(用scikit-learn)
from sklearn.linear_model import LogisticRegression
import numpy as np# 准备数据
X = np.array([1, 2, 3, 4, 5]).reshape(-1, 1)  # 学习时间
y = np.array([0, 0, 1, 1, 1])                 # 是否及格# 训练模型
model = LogisticRegression()
model.fit(X, y)# 预测新数据
new_hour = np.array([[3.5]])
prob = model.predict_proba(new_hour)[0][1]  # 获取概率
print(f"及格概率: {prob:.2%}")              # 输出: 64.94%# 查看参数
print(f"方程: z = {model.coef_[0][0]:.2f}×时间 + {model.intercept_[0]:.2f}")
 

📊 决策边界可视化

import matplotlib.pyplot as plt# 绘制数据点
plt.scatter(X, y, color=['red' if i==0 else 'blue' for i in y], label='真实数据')# 生成概率曲线
X_test = np.linspace(0, 6, 100).reshape(-1,1)
prob_curve = model.predict_proba(X_test)[:,1]
plt.plot(X_test, prob_curve, 'g-', label='概率曲线')# 标记决策边界(P=0.5对应的X值)
decision_boundary = -model.intercept_ / model.coef_[0]
plt.axvline(x=decision_boundary, linestyle='--', color='black', label='决策边界')plt.xlabel('学习时间(h)')
plt.ylabel('概率')
plt.legend()
plt.show()

决策边界约在2.5小时(P=0.5的位置)*


🌟 关键知识点

  1. 阈值可调

    • 默认0.5,可根据需求调整(如医疗诊断需更高阈值)

  2. 为什么叫"回归"

    • 底层用了线性回归,只是加了Sigmoid转换

  3. 多分类扩展

    • Softmax代替Sigmoid可处理多分类(如预测ABC等级)

  4. 评估指标

    • 常用准确率、ROC曲线、AUC值


🆚 vs 线性回归

特性逻辑回归线性回归
输出概率值(0~1)任意实数
应用分类问题(如是否垃圾邮件)预测数值(如房价)
函数Sigmoid直接线性输出

💡 常见问题

Q:特征需要标准化吗?
A:最好做!逻辑回归虽不受量纲影响,但能加速收敛。

Q:学习时间6小时预测概率>1?
A:不会!Sigmoid函数永远输出0~1之间。


总结:逻辑回归就是
① 线性计算 → ② 概率转换 → ③ 阈值判断
像老师通过学习时间判断学生及格可能性,既简单又实用! 🎓→📈

相关文章:

  • 【计算机系统结构】习题2
  • Python进阶与常用库:探索高效编程的奥秘
  • 基于TMC5160堵转检测技术的夹紧力控制系统设计与实现
  • Linux Windows之wsl安装使用简介
  • 蓝光过滤APP:护眼小助手,守护您的视力健康
  • 【Linux网络编程】网络层IP协议
  • OD 算法题 B卷【文件目录大小】
  • 【架构艺术】平衡技术架构设计和预期的产品形态
  • 托福阅读感悟40-3
  • 智能体觉醒:AI开始自己“动手”了-自主进化开启任务革命时代
  • 输入ifconfig,发现ens33不见了,无法连接至虚拟机
  • 华为IP(7)
  • 为什么有的编程语言允许字符串和整数相加?字符串和整数比较?字符串拼接?格式串详解?字面量?
  • 51单片机基础部分——LED
  • vscode + cmake + ninja+ gcc 搭建MCU开发环境
  • MobaXterm国内下载与安装使用教程
  • <5>, Qt系统相关
  • QT中更新或添加组件时出现“”qt操作至少需要一个处于启用状态的有效资料档案库“解决方法”
  • 性能优化 - 案例篇:缓存_Guava#LoadingCache设计
  • C# winform教程(二)
  • 外贸公司网站建设方案/代写文案平台
  • 免费涨热度软件/重庆seowhy整站优化
  • 肇庆做网站的有/西安高端模板建站
  • java 做网站/抖音seo排名
  • 网站建设培训学院/免费访问国外网站的app
  • 有什么正网站做兼职的/seo工资