当前位置: 首页 > news >正文

Python实例题:人机对战初体验Python基于Pygame实现四子棋游戏

目录

Python实例题

题目

代码实现

实现原理

游戏逻辑:

AI 算法:

界面渲染:

关键代码解析

游戏棋盘渲染

AI 决策算法

胜利条件检查

使用说明

安装依赖:

运行游戏:

游戏操作:

扩展建议

增强 AI:

界面改进:

功能扩展:

性能优化:

Python实例题

题目

人机对战初体验Python基于Pygame实现四子棋游戏

代码实现

import pygame
import sys
import numpy as np
import randomclass ConnectFour:def __init__(self):# 游戏常量self.ROWS = 6self.COLUMNS = 7self.SQUARE_SIZE = 100self.WIDTH = self.COLUMNS * self.SQUARE_SIZEself.HEIGHT = (self.ROWS + 1) * self.SQUARE_SIZEself.SCREEN_SIZE = (self.WIDTH, self.HEIGHT)self.RADIUS = int(self.SQUARE_SIZE / 2 - 5)# 颜色定义self.BLUE = (0, 0, 255)self.BLACK = (0, 0, 0)self.RED = (255, 0, 0)self.YELLOW = (255, 255, 0)self.WHITE = (255, 255, 255)# 初始化游戏pygame.init()self.screen = pygame.display.set_mode(self.SCREEN_SIZE)pygame.display.set_caption("四子棋")self.font = pygame.font.SysFont("SimHei", 40)self.small_font = pygame.font.SysFont("SimHei", 24)# 游戏变量self.board = np.zeros((self.ROWS, self.COLUMNS))self.game_over = Falseself.turn = 1  # 1: 玩家1/人类, 2: 玩家2/AIself.player_mode = 1  # 1: 人机对战, 2: 双人对战self.winner = 0# 绘制初始界面self.draw_board()pygame.display.update()def draw_board(self):"""绘制游戏棋盘"""# 绘制背景self.screen.fill(self.BLUE)# 绘制标题区域title_rect = pygame.Rect(0, 0, self.WIDTH, self.SQUARE_SIZE)pygame.draw.rect(self.screen, self.BLACK, title_rect)# 显示标题和模式title_text = self.font.render("四子棋", True, self.WHITE)self.screen.blit(title_text, (self.WIDTH // 2 - title_text.get_width() // 2, 30))mode_text = self.small_font.render("模式: 人机对战" if self.player_mode == 1 else "模式: 双人对战", True, self.WHITE)self.screen.blit(mode_text, (20, 35))# 绘制切换模式按钮button_rect = pygame.Rect(self.WIDTH - 150, 25, 120, 50)pygame.draw.rect(self.screen, self.RED if self.player_mode == 1 else self.YELLOW, button_rect)button_text = self.small_font.render("切换双人" if self.player_mode == 1 else "切换人机", True, self.WHITE)self.screen.blit(button_text, (button_rect.centerx - button_text.get_width() // 2, button_rect.centery - button_text.get_height() // 2))# 绘制棋盘格子for c in range(self.COLUMNS):for r in range(self.ROWS):pygame.draw.rect(self.screen, self.BLACK, (c * self.SQUARE_SIZE, (r + 1) * self.SQUARE_SIZE, self.SQUARE_SIZE, self.SQUARE_SIZE))pygame.draw.circle(self.screen, self.WHITE, (int(c * self.SQUARE_SIZE + self.SQUARE_SIZE / 2), int((r + 1) * self.SQUARE_SIZE + self.SQUARE_SIZE / 2)), self.RADIUS)# 绘制当前棋子for c in range(self.COLUMNS):for r in range(self.ROWS):if self.board[r][c] == 1:pygame.draw.circle(self.screen, self.RED, (int(c * self.SQUARE_SIZE + self.SQUARE_SIZE / 2), self.HEIGHT - int(r * self.SQUARE_SIZE + self.SQUARE_SIZE / 2)), self.RADIUS)elif self.board[r][c] == 2:pygame.draw.circle(self.screen, self.YELLOW, (int(c * self.SQUARE_SIZE + self.SQUARE_SIZE / 2), self.HEIGHT - int(r * self.SQUARE_SIZE + self.SQUARE_SIZE / 2)), self.RADIUS)# 如果游戏结束,显示获胜信息if self.game_over:overlay = pygame.Surface(self.SCREEN_SIZE, pygame.SRCALPHA)overlay.fill((0, 0, 0, 180))self.screen.blit(overlay, (0, 0))winner_text = self.font.render(f"玩家 {'红方' if self.winner == 1 else '黄方'} 获胜!" if self.winner != 0 else "平局!", True, self.WHITE)self.screen.blit(winner_text, (self.WIDTH // 2 - winner_text.get_width() // 2, self.HEIGHT // 2 - 30))restart_text = self.font.render("按R键重新开始", True, self.WHITE)self.screen.blit(restart_text, (self.WIDTH // 2 - restart_text.get_width() // 2, self.HEIGHT // 2 + 30))def is_valid_location(self, col):"""检查指定列是否可以放置棋子"""return self.board[0][col] == 0def get_next_open_row(self, col):"""获取指定列中下一个可用的行"""for r in range(self.ROWS - 1, -1, -1):if self.board[r][col] == 0:return rdef drop_piece(self, row, col, player):"""在指定位置放置棋子"""self.board[row][col] = playerdef check_winning_move(self, player):"""检查玩家是否获胜"""# 检查水平方向for c in range(self.COLUMNS - 3):for r in range(self.ROWS):if (self.board[r][c] == player and self.board[r][c + 1] == player and self.board[r][c + 2] == player and self.board[r][c + 3] == player):return True# 检查垂直方向for c in range(self.COLUMNS):for r in range(self.ROWS - 3):if (self.board[r][c] == player and self.board[r + 1][c] == player and self.board[r + 2][c] == player and self.board[r + 3][c] == player):return True# 检查正对角线for c in range(self.COLUMNS - 3):for r in range(self.ROWS - 3):if (self.board[r][c] == player and self.board[r + 1][c + 1] == player and self.board[r + 2][c + 2] == player and self.board[r + 3][c + 3] == player):return True# 检查反对角线for c in range(self.COLUMNS - 3):for r in range(3, self.ROWS):if (self.board[r][c] == player and self.board[r - 1][c + 1] == player and self.board[r - 2][c + 2] == player and self.board[r - 3][c + 3] == player):return Truereturn Falsedef is_board_full(self):"""检查棋盘是否已满"""for c in range(self.COLUMNS):if self.is_valid_location(c):return Falsereturn Truedef evaluate_window(self, window, player):"""评估一个窗口(四个位置)的得分"""score = 0opponent = 1 if player == 2 else 2if window.count(player) == 4:score += 100elif window.count(player) == 3 and window.count(0) == 1:score += 10elif window.count(player) == 2 and window.count(0) == 2:score += 5if window.count(opponent) == 3 and window.count(0) == 1:score -= 80  # 阻止对手三连return scoredef score_position(self, player):"""评估整个棋盘的得分"""score = 0# 评估中心列center_array = [int(i) for i in list(self.board[:, self.COLUMNS // 2])]center_count = center_array.count(player)score += center_count * 3# 评估水平方向for r in range(self.ROWS):row_array = [int(i) for i in list(self.board[r, :])]for c in range(self.COLUMNS - 3):window = row_array[c:c + 4]score += self.evaluate_window(window, player)# 评估垂直方向for c in range(self.COLUMNS):col_array = [int(i) for i in list(self.board[:, c])]for r in range(self.ROWS - 3):window = col_array[r:r + 4]score += self.evaluate_window(window, player)# 评估正对角线for r in range(self.ROWS - 3):for c in range(self.COLUMNS - 3):window = [self.board[r + i][c + i] for i in range(4)]score += self.evaluate_window(window, player)# 评估反对角线for r in range(self.ROWS - 3):for c in range(self.COLUMNS - 3):window = [self.board[r + 3 - i][c + i] for i in range(4)]score += self.evaluate_window(window, player)return scoredef get_valid_locations(self):"""获取所有可用的列"""valid_locations = []for col in range(self.COLUMNS):if self.is_valid_location(col):valid_locations.append(col)return valid_locationsdef minimax(self, depth, maximizingPlayer, alpha, beta):"""使用Minimax算法和Alpha-Beta剪枝选择最佳移动"""valid_locations = self.get_valid_locations()is_terminal = self.is_board_full() or self.check_winning_move(1) or self.check_winning_move(2)if depth == 0 or is_terminal:if is_terminal:if self.check_winning_move(2):return (None, 10000000)elif self.check_winning_move(1):return (None, -10000000)else:  # 平局return (None, 0)else:  # 深度为0return (None, self.score_position(2))if maximizingPlayer:value = -float('inf')column = random.choice(valid_locations)for col in valid_locations:row = self.get_next_open_row(col)temp_board = self.board.copy()self.drop_piece(row, col, 2)new_score = self.minimax(depth - 1, False, alpha, beta)[1]self.board = temp_boardif new_score > value:value = new_scorecolumn = colalpha = max(alpha, value)if alpha >= beta:breakreturn column, valueelse:  # 最小化玩家value = float('inf')column = random.choice(valid_locations)for col in valid_locations:row = self.get_next_open_row(col)temp_board = self.board.copy()self.drop_piece(row, col, 1)new_score = self.minimax(depth - 1, True, alpha, beta)[1]self.board = temp_boardif new_score < value:value = new_scorecolumn = colbeta = min(beta, value)if alpha >= beta:breakreturn column, valuedef ai_move(self):"""AI移动逻辑"""if not self.game_over:# 使用minimax算法选择最佳列,深度为4col, _ = self.minimax(4, True, -float('inf'), float('inf'))if self.is_valid_location(col):pygame.time.wait(500)  # 让AI思考看起来更自然row = self.get_next_open_row(col)self.drop_piece(row, col, 2)if self.check_winning_move(2):self.game_over = Trueself.winner = 2elif self.is_board_full():self.game_over = Trueself.winner = 0self.turn = 1  # 回到玩家1self.draw_board()pygame.display.update()def restart_game(self):"""重新开始游戏"""self.board = np.zeros((self.ROWS, self.COLUMNS))self.game_over = Falseself.turn = 1self.winner = 0self.draw_board()pygame.display.update()def run(self):"""运行游戏主循环"""clock = pygame.time.Clock()while True:clock.tick(60)for event in pygame.event.get():if event.type == pygame.QUIT:pygame.quit()sys.exit()if event.type == pygame.KEYDOWN:if event.key == pygame.K_r and self.game_over:self.restart_game()if event.type == pygame.MOUSEBUTTONDOWN:# 检查是否点击了模式切换按钮button_rect = pygame.Rect(self.WIDTH - 150, 25, 120, 50)if button_rect.collidepoint(event.pos):self.player_mode = 2 if self.player_mode == 1 else 1self.restart_game()continue# 游戏未结束且轮到人类玩家if not self.game_over and (self.turn == 1 or self.player_mode == 2):# 获取鼠标位置pos_x = event.pos[0]col = int(pos_x // self.SQUARE_SIZE)# 检查列是否有效if self.is_valid_location(col):# 获取下一个可用行row = self.get_next_open_row(col)# 放置棋子player = self.turnself.drop_piece(row, col, player)# 检查是否获胜if self.check_winning_move(player):self.game_over = Trueself.winner = player# 检查是否平局elif self.is_board_full():self.game_over = Trueself.winner = 0# 切换玩家self.turn = 2 if self.turn == 1 else 1# 绘制棋盘self.draw_board()pygame.display.update()# AI移动(人机对战且轮到AI)if not self.game_over and self.turn == 2 and self.player_mode == 1:self.ai_move()if __name__ == "__main__":game = ConnectFour()game.run()    

实现原理

这个四子棋游戏基于以下核心技术实现:

  • 游戏逻辑

    • 使用 numpy 数组表示游戏棋盘
    • 实现棋子放置、胜利条件检查和棋盘状态评估
    • 支持人机对战和双人对战模式
  • AI 算法

    • 使用 Minimax 算法进行决策
    • 实现 Alpha-Beta 剪枝优化搜索效率
    • 设计评分函数评估棋盘状态
  • 界面渲染

    • 使用 Pygame 创建图形界面
    • 实现棋盘、棋子和交互元素的绘制
    • 添加游戏状态提示和模式切换功能

关键代码解析

游戏棋盘渲染

def draw_board(self):# 绘制背景和标题self.screen.fill(self.BLUE)title_rect = pygame.Rect(0, 0, self.WIDTH, self.SQUARE_SIZE)pygame.draw.rect(self.screen, self.BLACK, title_rect)# 绘制棋盘格子和棋子for c in range(self.COLUMNS):for r in range(self.ROWS):pygame.draw.rect(self.screen, self.BLACK, (c * self.SQUARE_SIZE, (r + 1) * self.SQUARE_SIZE, self.SQUARE_SIZE, self.SQUARE_SIZE))pygame.draw.circle(self.screen, self.WHITE, (int(c * self.SQUARE_SIZE + self.SQUARE_SIZE / 2), int((r + 1) * self.SQUARE_SIZE + self.SQUARE_SIZE / 2)), self.RADIUS)# 绘制当前棋子状态for c in range(self.COLUMNS):for r in range(self.ROWS):if self.board[r][c] == 1:pygame.draw.circle(self.screen, self.RED, (int(c * self.SQUARE_SIZE + self.SQUARE_SIZE / 2), self.HEIGHT - int(r * self.SQUARE_SIZE + self.SQUARE_SIZE / 2)), self.RADIUS)elif self.board[r][c] == 2:pygame.draw.circle(self.screen, self.YELLOW, (int(c * self.SQUARE_SIZE + self.SQUARE_SIZE / 2), self.HEIGHT - int(r * self.SQUARE_SIZE + self.SQUARE_SIZE / 2)), self.RADIUS)

AI 决策算法

def minimax(self, depth, maximizingPlayer, alpha, beta):valid_locations = self.get_valid_locations()is_terminal = self.is_board_full() or self.check_winning_move(1) or self.check_winning_move(2)if depth == 0 or is_terminal:if is_terminal:if self.check_winning_move(2):return (None, 10000000)elif self.check_winning_move(1):return (None, -10000000)else:return (None, 0)else:return (None, self.score_position(2))if maximizingPlayer:value = -float('inf')column = random.choice(valid_locations)for col in valid_locations:row = self.get_next_open_row(col)temp_board = self.board.copy()self.drop_piece(row, col, 2)new_score = self.minimax(depth - 1, False, alpha, beta)[1]self.board = temp_boardif new_score > value:value = new_scorecolumn = colalpha = max(alpha, value)if alpha >= beta:breakreturn column, valueelse:value = float('inf')column = random.choice(valid_locations)for col in valid_locations:row = self.get_next_open_row(col)temp_board = self.board.copy()self.drop_piece(row, col, 1)new_score = self.minimax(depth - 1, True, alpha, beta)[1]self.board = temp_boardif new_score < value:value = new_scorecolumn = colbeta = min(beta, value)if alpha >= beta:breakreturn column, value

胜利条件检查

def check_winning_move(self, player):# 检查水平方向for c in range(self.COLUMNS - 3):for r in range(self.ROWS):if (self.board[r][c] == player and self.board[r][c + 1] == player and self.board[r][c + 2] == player and self.board[r][c + 3] == player):return True# 检查垂直方向for c in range(self.COLUMNS):for r in range(self.ROWS - 3):if (self.board[r][c] == player and self.board[r + 1][c] == player and self.board[r + 2][c] == player and self.board[r + 3][c] == player):return True# 检查正对角线for c in range(self.COLUMNS - 3):for r in range(self.ROWS - 3):if (self.board[r][c] == player and self.board[r + 1][c + 1] == player and self.board[r + 2][c + 2] == player and self.board[r + 3][c + 3] == player):return True# 检查反对角线for c in range(self.COLUMNS - 3):for r in range(3, self.ROWS):if (self.board[r][c] == player and self.board[r - 1][c + 1] == player and self.board[r - 2][c + 2] == player and self.board[r - 3][c + 3] == player):return Truereturn False

使用说明

  • 安装依赖

pip install pygame numpy
  • 运行游戏

python connect_four.py
  • 游戏操作

    • 人机对战:红方 (玩家) vs 黄方 (AI)
    • 双人对战:红方 (玩家 1) vs 黄方 (玩家 2)
    • 点击顶部按钮切换游戏模式
    • 点击列顶部放置棋子
    • 游戏结束后按 R 键重新开始

扩展建议

  • 增强 AI

    • 优化评分函数,考虑更多策略因素
    • 增加难度级别选择
    • 实现蒙特卡洛树搜索算法
  • 界面改进

    • 添加动画效果(棋子下落、胜利高亮)
    • 设计更精美的 UI 元素
    • 支持全屏模式和窗口调整
  • 功能扩展

    • 实现游戏存档和回放功能
    • 添加音效和背景音乐
    • 支持局域网多人对战
  • 性能优化

    • 使用位运算优化棋盘表示
    • 实现多线程计算 AI 决策
    • 添加游戏状态缓存机制

相关文章:

  • 量子计算:开启未来计算新纪元的革命性技术
  • 如何对两段轨迹进行拟合过渡
  • 语音搜索崛起:专业优化指南助您引领潮流
  • Leaflet根据坐标画圆形区域
  • RK3588 DRM 介绍及调试记录
  • 力扣刷题Day 53:和为 K 的子数组(560)
  • 消息队列在异步推理任务中的作用
  • 86. Java 数字和字符串 - 数字
  • java刷题(6)
  • 部署n8n
  • 树莓派开箱上手教程(无需显示器版)
  • 战略-2.1 -战略分析(PEST/五力模型/成功关键因素)
  • 基于蒙特卡罗 AWGN信道调制信号互信息(信道容量)
  • Flink运行架构及并行度设置
  • P8943 Deception Point
  • python语法学习
  • C++ STL
  • DVWA通关笔记-靶场安装教程
  • [爬虫知识] IP代理
  • 从神经生物学到社会心理学:游戏沉迷机制的深度解构
  • 黄冈市住房和城乡建设厅网站/武汉seo搜索引擎
  • 网站说服力-营销型网站策划/百度域名购买
  • 带论坛的网站模板下载/百度推广怎么收费的
  • 大连商城网站建设/抖音推广方案
  • 网站优化成本/重庆网站制作公司哪家好
  • 做招聘信息的网站有哪些/海淀区seo搜索引擎