【随机过程】贝叶斯估计
习题8-37
总平方和分解(Total Sum of Squares Decomposition)
这个恒等式:
∑ ( x i − θ ) 2 = ∑ ( x i − x ˉ ) 2 + n ( x ˉ − θ ) 2 \sum\left(x_i-\theta\right)^2 = \sum\left(x_i-\bar{x}\right)^2 + n(\bar{x}-\theta)^2 ∑(xi−θ)2=∑(xi−xˉ)2+n(xˉ−θ)2
是统计学中著名的 总平方和分解(Total Sum of Squares Decomposition)。它的推导如下:
-
从左侧开始: ∑ ( x i − θ ) 2 \sum (x_i - \theta)^2 ∑(xi−θ)2
-
在平方项中加上并减去 x ˉ \bar{x} xˉ(样本均值): ∑ [ ( x i − x ˉ ) + ( x ˉ − θ ) ] 2 \sum [(x_i - \bar{x}) + (\bar{x} - \theta)]^2 ∑[(xi−xˉ)+(xˉ−θ)]2
-
展开平方: ∑ [ ( x i − x ˉ ) 2 + 2 ( x i − x ˉ ) ( x ˉ − θ ) + ( x ˉ − θ ) 2 ] \sum \left[(x_i - \bar{x})^2 + 2(x_i - \bar{x})(\bar{x} - \theta) + (\bar{x} - \theta)^2\right] ∑[(xi−xˉ)2+2(xi−xˉ)(xˉ−θ)+(xˉ−θ)2]
-
分配求和: ∑ ( x i − x ˉ ) 2 + 2 ( x ˉ − θ ) ∑ ( x i − x ˉ ) + ∑ ( x ˉ − θ ) 2 \sum (x_i - \bar{x})^2 + 2(\bar{x} - \theta)\sum (x_i - \bar{x}) + \sum (\bar{x} - \theta)^2 ∑(xi−xˉ)2+2(xˉ−θ)∑(xi−