目录
- 一、术前阶段
- 1.1 数据采集与预处理系统
-
- 1.2 特征提取与选择模块
-
- 1.3 大模型风险评估系统
-
- 二、术中阶段
- 2.1 智能手术规划系统
-
- 2.2 麻醉智能监控系统
-
- 三、术后阶段
-
- 四、技术验证体系
-
一、术前阶段
1.1 数据采集与预处理系统
伪代码实现
def collect_patient_data(patient_id):ct_images = load_dicom_files("path/to/ct_scans") mri_images = load_nii_files("path/to/mri_scans") vital_signs = get_vital_parameters("patient_records") medical_history = parse_medical_records("text_records") gene_data = fetch_gene_profile("genome_database", patient_id)return {"images": {"CT": ct_images, "MRI": mri_images},"vitals": vital_signs,"history": medical_history,"genes": gene_data}
def preprocess_data(raw_data):filled_vitals = fill_missing_values(raw_data["vitals"], method="mean")normalized_ct = normalize_image(raw_data["images"]["CT"])normalized_mri = normalize_image(raw_data["images"]["MRI"])encoded_history = encode_categorical(raw_data["history"])return {"images": {"CT": normalized_ct, "MRI": normalized_mri},"vitals": filled_vitals,"history": encoded_history}
流程图
1.2 特征提取与选择模块
伪代码实现
def extract_imaging_features(ct_image):segmented_mask = unet_predict(ct_image)volume = calculate_volume(segmented_mask)shape_features = extract_shape_descriptors(segmented_mask)return {**shape_features, "volume": volume}
def select_clinical_features(vitals, history):feature_importance = xgboost_feature_selection(vitals + history)selected_features = filter_top_features(feature_importance, threshold=0.1)return selected_features
流程图