机器学习课堂6交叉熵代价函数的逻辑回归模型
代码
# 2-10交叉熵代价函数的逻辑回归模型 import pandas as pd import numpy as np import matplotlib.pyplot as plt # 参数设置 iterations = 1000 # 迭代次数 learning_rate = 0.1 # 学习率 m_train = 250 # 训练样本数量 # 读入酒驾检测数据集 df = pd.read_csv('alcohol_dataset.csv') data=np.array(df) m_all = np.shape(data)[0] # 样本总数 d =np.shape(data)[1] - 1 # 输入特征的维数 m_test = m_all - m_train # 测试数据集样本数量 # 构造随机种子为指定值的随机数生成器,并对数据集中样本随机排序 rng=np.random.default_rng(1) rng.shuffle(data) # 对输入特征标准化 mean=np.mean(data[0:m_train, 0:d], axis=0) # 计算训练样本输入特征的均值 std=np.std(data[0:m_train, 0:d], axis=0, ddof=1) # 计算训练样本输入特诊的标准差 data[:, 0:d]=(data[:, 0:d]-mean)/std # 标准化所有样本的输入特征 # 划分数据集 X_train = data[0:m_train, 0:d].T # 训练集输入特征 X_test = data[m_train:, 0:d].T # 测试集输入特征 Y_train = data[0:m_train, d].reshape((1, -1)) # 训练集目标值 Y_test = data[m_train:, d].reshape((1, -1)) # 测试集目标值 # 初始化 w = np.zeros((d, 1)).reshape((-1, 1)) # 权重 b = 0 # 偏差(标量) v = np.ones((1, m_train)) # 1向量 costs_saved = [] # 用于保存代价函数的值 # 训练过程,迭代循环 for i in range(iterations): # 更新权重与偏差 z = np.dot(w.T, X_train) + b * v # 线性回归部分 Y_hat = 1. / (1 + np.exp(-z)) e = Y_hat - Y_train # 计算误差 b = b - learning_rate * np.dot(v, e.T) / m_train # 更新偏差 w = w - learning_rate * np.dot(X_train, e.T) / m_train # 更新权重 # 保存代价函数的值 Y_1_hat = 1 - Y_hat Y_1 = 1 - Y_train costs = -(np.dot(np.log(Y_hat), Y_train.T) + np.dot(np.log(Y_1_hat), Y_1.T)) / m_train costs_saved.append(costs.item(0)) # 打印最新权重与偏差 print('Weights=', np.array2string(np.squeeze(w, axis=1), precision=3)) print(f'Bias={b.item(0):.3f}') # 画代价函数值 plt.plot(range(1, np.size(costs_saved) + 1), costs_saved, 'r-o', linewidth=2, markersize=5) plt.ylabel('costs') plt.xlabel('iterations') plt.title('learning rate=' + str(learning_rate)) plt.show() # 训练数据集上的分类错误 Y_train_hat = (np.dot(w.T, X_train) + b * v) >= 0 errors_train=np.sum(np.abs(Y_train_hat-Y_train)) print('Trainset Predicted errors=', errors_train.astype(int)) # 测试数据集上的分类错误 Y_test_hat=(np.dot(w.T,X_test)+b)>=0 errors_test=np.sum(np.abs(Y_test_hat-Y_test)) print('Testset Predicted errors=', errors_test.astype(int)) # 训练数据集上的混淆矩阵 tp=np.sum(np.logical_and(Y_train==1,Y_train_hat==1)) # TP fp=np.sum(np.logical_and(Y_train==0,Y_train_hat==1)) # FP tn=np.sum(np.logical_and(Y_train==0,Y_train_hat==0)) # TN fn=np.sum(np.logical_and(Y_train==1,Y_train_hat==0)) # FN print(f'Trainset TP={tp},FP={fp},TN={tn},FN={fn}') # 训练数据集上的召回率、精度、F1值 recall=tp/(tp+fn) precision=tp/(tp+fp) f1=2*recall*precision/(recall+precision) print(f'Trainset recall={recall:.3},presision={precision:.3},F1={f1:.3}') # 测试数据集上的混淆矩阵 tp_test=np.sum(np.logical_and(Y_test==1, Y_test_hat==1)) fp_test=np.sum(np.logical_and(Y_test==0, Y_test_hat==1)) tn_test=np.sum(np.logical_and(Y_test==0, Y_test_hat==0)) fn_test=np.sum(np.logical_and(Y_test==1, Y_test_hat==0)) print(f'Trestset TP={tp_test},FP={fp_test},TN={tn_test},FN={fn_test}') # 测试数据集上的召回率、精度、F1值 recall_test=tp_test/(tp_test+fn_test) precision_test=tp_test/(tp_test+fp_test) f1_test=2*recall_test*precision_test/(recall_test+precision_test) print(f'Trainset recall={recall_test:.3},presision={precision_test:.3},F1={f1_test:.3}')
结果图