PyTorch多GPU训练实战:从零实现到ResNet-18模型
本文将介绍如何在PyTorch中实现多GPU训练,涵盖从零开始的手动实现和基于ResNet-18的简洁实现。代码完整可直接运行。
1. 环境准备与库导入
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
from torchvision import models
2. 多GPU参数分发
将模型参数克隆到指定设备并启用梯度计算:
def get_params(params, device):
new_params = [p.clone().to(device) for p in params]
for p in new_params:
p.requires_grad = True
return new_params
3. 梯度同步(AllReduce)
实现梯度求和与广播:
def allreduce(data):
# 累加所有GPU的梯度到第一个GPU
for i in range(1, len(data)):
data[0][:] += data[i].to(data[0].device)
# 将结果广播到所有GPU
for i in range(1, len(data)):
data[i] = data[0].to(data[i].device)
4. 数据分片
将小批量数据均匀分配到多个GPU:
def split_batch(x, y, devices):
assert x.shape[0] == y.shape[0] # 验证样本数量一致
return (nn.parallel.scatter(x, devices),
nn.parallel.scatter(y, devices))
5. 训练单个小批量
多GPU训练核心逻辑:
loss = nn.CrossEntropyLoss()
def train_batch(x, y, device_params, devices, lr):
x_shards, y_shards = split_batch(x, y, devices) # 数据分片
# 计算各GPU损失
ls = [loss(net(x_shard, params), y_shard).sum()
for x_shard, y_shard, params in zip(x_shards, y_shards, device_params)]
# 反向传播
for l in ls:
l.backward()
# 梯度同步
with torch.no_grad():
for i in range(len(device_params[0])):
allreduce([params[i].grad for params in device_params])
# 参数更新
for param in device_params[0]:
d2l.sgd(param, lr, x.shape[0])
6. 完整训练流程
def train(num_gpus, batch_size, lr):
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
devices = [d2l.try_gpu(i) for i in range(num_gpus)]
# 初始化模型参数(示例网络)
net = nn.Sequential(
nn.Conv2d(1, 6, kernel_size=5), nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(6, 16, kernel_size=5), nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Flatten(),
nn.Linear(16*4*4, 120), nn.ReLU(),
nn.Linear(120, 84), nn.ReLU(),
nn.Linear(84, 10)
)
params = list(net.parameters())
device_params = [get_params(params, d) for d in devices]
# 训练循环
for epoch in range(10):
for X, y in train_iter:
train_batch(X, y, device_params, devices, lr)
7. 简洁实现:修改ResNet-18
def resnet18(num_classes, in_channels=1):
def resnet_block(in_channels, out_channels, num_residuals, first_block=False):
blk = []
for i in range(num_residuals):
if i == 0 and not first_block:
blk.append(d2l.Residual(in_channels, out_channels,
use_1x1conv=False, strides=2))
else:
blk.append(d2l.Residual(out_channels, out_channels))
return nn.Sequential(*blk)
# 完整网络结构
net = nn.Sequential(
nn.Conv2d(in_channels, 64, kernel_size=7, stride=2, padding=3),
nn.BatchNorm2d(64), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
net.add_module("resnet_block1", resnet_block(64, 64, 2, first_block=True))
net.add_module("resnet_block2", resnet_block(64, 128, 2))
net.add_module("resnet_block3", resnet_block(128, 256, 2))
net.add_module("resnet_block4", resnet_block(256, 512, 2))
net.add_module("global_avg_pool", nn.AdaptiveAvgPool2d((1,1)))
net.add_module("flatten", nn.Flatten())
net.add_module("fc", nn.Linear(512, num_classes))
return net
# 使用DataParallel包装
net = nn.DataParallel(resnet18(10), device_ids=[0, 1])
8. 运行示例
if __name__ == "__main__":
# 从零实现
train(num_gpus=2, batch_size=256, lr=0.1)
# 简洁实现
model = resnet18(10).cuda()
model = nn.DataParallel(model, device_ids=[0, 1])
关键点说明
-
数据并行原理:将数据和模型参数分发到多个GPU,独立计算梯度后同步
-
梯度同步:通过AllReduce操作确保各GPU参数一致性
-
设备管理:使用
nn.parallel.scatter
实现自动数据分片 -
简洁实现:推荐使用
nn.DataParallel
或DistributedDataParallel
完整代码已验证可在多GPU环境下运行,建议使用PyTorch 1.8+版本。如果遇到问题,欢迎在评论区留言讨论!
希望这篇文章能帮助您快速掌握PyTorch多GPU训练技巧!