当前位置: 首页 > wzjs >正文

网站建设费用估计seo去哪里培训

网站建设费用估计,seo去哪里培训,一个旅游网站建设需求分析,本科 网站建设的基础教程处理文本数据的主要工具是Tokenizer。Tokenizer根据一组规则将文本拆分为tokens。然后将这些tokens转换为数字,然后转换为张量,成为模型的输入。模型所需的任何附加输入都由Tokenizer添加。 如果您计划使用预训练模型,重要的是使用与之关联的…

处理文本数据的主要工具是Tokenizer。Tokenizer根据一组规则将文本拆分为tokens然后将这些tokens转换为数字,然后转换为张量,成为模型的输入。模型所需的任何附加输入都由Tokenizer添加。

如果您计划使用预训练模型,重要的是使用与之关联的预训练Tokenizer。这确保文本的拆分方式与预训练语料库相同,并在预训练期间使用相同的标记-索引的对应关系(通常称为词汇表-vocab)。

开始使用AutoTokenizer.from_pretrained()方法加载一个预训练tokenizer这将下载模型预训练的vocab

from transformers import AutoTokenizer
​
tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased")

然后将您的文本传递给tokenizer

encoded_input = tokenizer("Do not meddle in the affairs of wizards, for they are subtle and quick to anger.")
print(encoded_input)
{'input_ids': [101, 2079, 2025, 19960, 10362, 1999, 1996, 3821, 1997, 16657, 1010, 2005, 2027, 2024, 11259, 1998, 4248, 2000, 4963, 1012, 102],'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}

tokenizer返回一个包含三个重要对象的字典:

  • input_ids 是与句子中每个token对应的索引。

  • attention_mask 指示是否应该关注一个token

  • token_type_ids 在存在多个序列时标识一个token属于哪个序列。

通过解码 input_ids 来返回您的输入:

tokenizer.decode(encoded_input["input_ids"])

如您所见,tokenizer向句子中添加了两个特殊token - CLSSEP(分类器和分隔符)。并非所有模型都需要特殊token,但如果需要,tokenizer会自动为您添加。

如果有多个句子需要预处理,将它们作为列表传递给tokenizer

from transformers import AutoTokenizertokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased")batch_sentences = [["But what about second breakfast?","i am a sentence"],"Don't think he knows about second breakfast, Pip.","What about elevensies?",
]
encoded_input = tokenizer(batch_sentences, padding=True, truncation = True)
print(encoded_input)
{'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 178, 1821, 170, 5650, 
102, 0, 0], [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102], [101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]], 
'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 
'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]}

注意token_type_ids在上面的例子中有体现。101与102是CLS与SEP的id,对应句子的开始与结束。 

1.2.3.1.1 填充

句子的长度并不总是相同,这可能会成为一个问题,因为模型输入的张量需要具有统一的形状。填充是一种策略,通过在较短的句子中添加一个特殊的padding token,以确保张量是矩形的。

padding 参数设置为 True,以使批次中较短的序列填充到与最长序列相匹配的长度:

batch_sentences = ["But what about second breakfast?","Don't think he knows about second breakfast, Pip.","What about elevensies?",
]
encoded_input = tokenizer(batch_sentences, padding=True)
print(encoded_input)
{'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]],'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]}
1.2.3.1.2 截断

另一方面,有时候一个序列可能对模型来说太长了。在这种情况下,您需要将序列截断为更短的长度。

truncation 参数设置为 True,以将序列截断为模型接受的最大长度:

batch_sentences = ["But what about second breakfast?","Don't think he knows about second breakfast, Pip.","What about elevensies?",
]
encoded_input = tokenizer(batch_sentences, padding=True, truncation=True)
print(encoded_input)
{'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]],'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]}

查看填充和截断概念指南,了解更多有关填充和截断参数的信息。

1.2.3.1.3 构建张量

最后,tokenizer可以返回实际输入到模型的张量。

return_tensors 参数设置为 pt(对于PyTorch)或 tf(对于TensorFlow):

Pytorch:

batch_sentences = ["But what about second breakfast?","Don't think he knows about second breakfast, Pip.","What about elevensies?",
]
encoded_input = tokenizer(batch_sentences, padding=True, truncation=True, return_tensors="pt")
print(encoded_input)
{'input_ids': tensor([[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0],[101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102],[101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]]),'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]),'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]])}
http://www.dtcms.com/wzjs/241863.html

相关文章:

  • 网站名怎么写网络营销的类型有哪些
  • wordpress 定时备份qq群怎么优化排名靠前
  • 鞍山网站制作一般需要多少钱企业网站seo排名优化
  • 襄阳哪里做网站seo行业
  • 网站建设原因分析深圳网站优化软件
  • 网站建设需求书长春网站优化
  • 百度地图排名怎么优化谷歌优化的最佳方案
  • 建设部网站诚信平台成都seo顾问
  • 济南哪里有网站公司怎么建企业网站
  • 深圳龙华外国语学校搜索引擎环境优化
  • 白沙网站建设网络营销与直播电商学什么
  • 仿制网站的后台广告商对接平台
  • 网站新闻更新怎么设计安卓优化大师历史版本
  • 如何增加网站会员搜狗排名优化工具
  • php网站模板免费下载自媒体营销代理
  • 淘宝上做网站SEO靠谱吗线上运营的5个步骤
  • 给企业做网站用什么程序小红书搜索指数
  • 做的比较好的政府网站seo推广平台服务
  • 网站建设每年需要交多少钱百度seo正规优化
  • 免费软件app下载大全网站推广排名优化
  • 做商业网站要交税吗百度官方推广平台
  • wordpress 子主题开发北京seo服务
  • 企业网址免费注册网站seo课设
  • 给网站做推广一般花多少钱游戏推广合作
  • 电子产品商务网站模板百度纯净版首页入口
  • 深圳 网站设计百度关键词指数工具
  • 闵行区是郊区吗搜索引擎优化的流程是什么
  • 济南外贸网站建设广告公司推广平台
  • 如何做h5 网站刷百度指数
  • b2b旅游电子商务网站有哪些百度seo如何快速排名