DeepSeek API keys本地调用 [python]
首先需要安装python
再安装pycharm
打开pycharm终端
第一步是安装三个包,通过 pip install langchain
来安装LangChain,通过 pip install openai
来安装OpenAI,还需要通过 pip install langchain-openai
以便在 LangChain 中使用 OpenAI 模型
安装后可以直接开发
首先需要在deepseek官网申请密钥https://platform.deepseek.com/api_keys
首次调用API
from openai import OpenAI
client = OpenAI(api_key="<DeepSeek API Key>", base_url="https://api.deepseek.com")
response = client.chat.completions.create(
model="deepseek-chat",
messages=[
{"role":"system","content":"You are a helpful assistant"},
{"role":"user","content":"Hello"},
],
stream=False
)
print(response.choices[0].message.content)
优化一下可以进行一对一对话
from openai import OpenAI
# 初始化 OpenAI 客户端
client = OpenAI(api_key=<你的密钥地址:str类型>, base_url="https://api.deepseek.com")
# 初始化对话消息列表
messages = [
{"role": "assistant", "content": "你是一个AI专家"}
]
while True:
# 获取用户输入
user_input = input("你: ")
if user_input.lower() == 'quit':
break
elif user_input.lower().startswith('set_system '):
# 提取新的系统角色内容
new_system_content = user_input[11:]
# 找到并更新系统消息
for message in messages:
if message["role"] == "system":
message["content"] = new_system_content
break
print(f"系统角色已更新为: {new_system_content}")
continue
# 将用户输入添加到消息列表
messages.append({"role": "user", "content": user_input})
# 调用模型获取回复
try:
response = client.chat.completions.create(
model="deepseek-chat",
messages=messages,
max_tokens=1024,
temperature=0.7,
stream=True,
)
# 获取模型回复内容
for s in response:
content = s.choices[0].delta.content
if content is not None:
print(content, end="")
assistant_reply = content
print()
# 将模型回复添加到消息列表
messages.append({"role": "assistant", "content": assistant_reply})
except Exception as e:
print(f"发生错误: {e}")