当前位置: 首页 > news >正文

怎么写代码自己制作网站化妆品网站建设模板

怎么写代码自己制作网站,化妆品网站建设模板,企业网站建站企业,免费建网站中文域名后端服务实现:支持多语言的vLLM服务 本部分包含后端服务的完整实现,包括vLLM模型服务、多语言支持和API接口。 1. 后端目录结构 backend/ ├── server.py # FastAPI服务入口 ├── agent.py # Agent逻辑实现 ├── i18n.py …

后端服务实现:支持多语言的vLLM服务

本部分包含后端服务的完整实现,包括vLLM模型服务、多语言支持和API接口。

1. 后端目录结构

backend/
├── server.py          # FastAPI服务入口
├── agent.py           # Agent逻辑实现
├── i18n.py            # 国际化支持
├── locales/           # 语言文件
│   ├── en.json
│   ├── zh-CN.json
│   └── ja.json
└── requirements.txt   # 依赖项

2. 依赖项清单 (requirements.txt)

fastapi==0.104.1
uvicorn==0.24.0
vllm==0.2.7
transformers==4.36.0
torch==2.1.0
pydantic==2.5.0
python-multipart==0.0.6
pyyaml==6.0.1

3. 国际化支持模块 (i18n.py)

"""
国际化(i18n)支持模块
"""
import json
from pathlib import Path
from typing import Dict, Anyclass I18n:"""国际化管理类"""def __init__(self, default_lang: str = 'en'):self.default_lang = default_langself.current_lang = default_langself.translations: Dict[str, Dict] = {}self.load_translations()def load_translations(self):"""加载所有语言文件"""locales_dir = Path(__file__).parent / 'locales'for lang_file in locales_dir.glob('*.json'):lang_code = lang_file.stemtry:with open(lang_file, 'r', encoding='utf-8') as f:self.translations[lang_code] = json.load(f)except Exception as e:print(f"Failed to load language file {lang_file}: {e}")def set_language(self, lang: str):"""设置当前语言"""if lang in self.translations:self.current_lang = langelse:# 尝试匹配语言代码前缀for available_lang in self.translations.keys():if lang.startswith(available_lang.split('-')[0]):self.current_lang = available_langreturnself.current_lang = self.default_langdef get(self, key: str, **kwargs) -> str:"""获取翻译文本"""keys = key.split('.')# 获取当前语言的翻译translation = self.translations.get(self.current_lang, {})# 逐级获取嵌套的值for k in keys:if isinstance(translation, dict):translation = translation.get(k)else:break# 如果找不到,尝试默认语言if translation is None:translation = self.translations.get(self.default_lang, {})for k in keys:if isinstance(translation, dict):translation = translation.get(k)else:break# 如果还是找不到,返回keyif translation is None:return key# 格式化字符串if kwargs:try:return translation.format(**kwargs)except:return translationreturn translationdef get_language_from_header(self, accept_language: str) -> str:"""从Accept-Language请求头获取语言"""if not accept_language:return self.default_lang# 解析Accept-Language头languages = []for lang in accept_language.split(','):parts = lang.strip().split(';')language = parts[0]if len(parts) > 1 and parts[1].startswith('q='):priority = float(parts[1][2:])else:priority = 1.0languages.append((priority, language))# 按优先级排序languages.sort(reverse=True)# 找到第一个支持的语言for _, lang_code in languages:# 精确匹配if lang_code in self.translations:return lang_code# 语言代码匹配(如zh匹配zh-CN)lang_prefix = lang_code.split('-')[0].lower()for available_lang in self.translations.keys():if available_lang.lower().startswith(lang_prefix):return available_langreturn self.default_lang# 全局i18n实例
i18n = I18n()# 便捷函数
def _(key: str, **kwargs) -> str:"""翻译函数的快捷方式"""return i18n.get(key, **kwargs)

4. 语言文件 (locales)

en.json

{"server": {"loading_model": "Loading model: {model}","model_loaded": "Model loaded successfully","agent_not_initialized": "Agent not initialized","unsupported_action": "Unsupported action: {action}","request_failed": "Failed to process request: {error}","server_healthy": "Server is healthy","starting": "Starting Coding Agent Backend..."},"agent": {"actions": {"complete": "Code Completion","generate": "Code Generation","explain": "Code Explanation","refactor": "Code Refactoring","debug": "Debug Analysis","test": "Test Generation"},"prompts": {"complete": "Complete the following {language} code:\n\n{code_before}\n<CURSOR>\n{code_after}\n\nContinue from <CURSOR>:","generate": "You are an expert programmer. Generate {language} code based on the following instruction:\n\nInstruction: {instruction}\nContext: {context}\n\nPlease provide clean, well-commented code:\n```{language}\n","explain": "Explain the following {language} code in detail:\n\n```{language}\n{code}\n```\n\nProvide a clear explanation:","refactor": "Refactor the following {language} code to improve readability, performance, and follow best practices:\n\nOriginal code:\n```{language}\n{code}\n```\n\nRefactored code with improvements:\n```{language}\n","debug": "Debug the following {language} code and identify any issues:\n\nCode:\n```{language}\n{code}\n```\n\nIdentify bugs and provide fixes:","test": "Generate comprehensive unit tests for the following {language} code:\n\nCode to test:\n```{language}\n{code}\n```\n\nTest code:\n```{language}\n"},"suggestions": {"simplified": "Code has been simplified","extracted_function": "Extracted into functions","improved_format": "Improved code formatting"}}
}

zh-CN.json

{"server": {"loading_model": "正在加载模型: {model}","model_loaded": "模型加载成功","agent_not_initialized": "Agent未初始化","unsupported_action": "不支持的操作: {action}","request_failed": "处理请求失败: {error}","server_healthy": "服务器运行正常","starting": "正在启动编码助手后端…"},"agent": {"actions": {"complete": "代码补全","generate": "代码生成","explain": "代码解释","refactor": "代码重构","debug": "调试分析","test": "测试生成"},"prompts": {"complete": "补全以下{language}代码:\n\n{code_before}\n<CURSOR>\n{code_after}\n\n从<CURSOR>继续:","generate": "你是一位专业的程序员。根据以下指令生成{language}代码:\n\n指令: {instruction}\n上下文: {context}\n\n请提供清晰、注释完善的代码:\n```{language}\n","explain": "详细解释以下{language}代码:\n\n```{language}\n{code}\n```\n\n请提供清晰的解释:","refactor": "重构以下{language}代码,提高可读性、性能并遵循最佳实践:\n\n原始代码:\n```{language}\n{code}\n```\n\n改进后的代码:\n```{language}\n","debug": "调试以下{language}代码并识别问题:\n\n代码:\n```{language}\n{code}\n```\n\n识别错误并提供修复方案:","test": "为以下{language}代码生成全面的单元测试:\n\n待测试代码:\n```{language}\n{code}\n```\n\n测试代码:\n```{language}\n"},"suggestions": {"simplified": "代码已简化","extracted_function": "已提取为函数","improved_format": "改进了代码格式"}}
}

ja.json

{"server": {"loading_model": "モデルをロード中: {model}","model_loaded": "モデルのロードが完了しました","agent_not_initialized": "エージェントが初期化されていません","unsupported_action": "サポートされていないアクション: {action}","request_failed": "リクエストの処理に失敗しました: {error}","server_healthy": "サーバーは正常に動作しています","starting": "コーディングエージェントバックエンドを起動中…"},"agent": {"actions": {"complete": "コード補完","generate": "コード生成","explain": "コード説明","refactor": "コードリファクタリング","debug": "デバッグ分析","test": "テスト生成"},"prompts": {"complete": "次の{language}コードを補完してください:\n\n{code_before}\n<CURSOR>\n{code_after}\n\n<CURSOR>から続けてください:","generate": "あなたはエキスパートプログラマーです。次の指示に基づいて{language}コードを生成してください:\n\n指示: {instruction}\nコンテキスト: {context}\n\nクリーンでコメント付きのコードを提供してください:\n```{language}\n","explain": "次の{language}コードを詳しく説明してください:\n\n```{language}\n{code}\n```\n\n明確な説明を提供してください:","refactor": "次の{language}コードをリファクタリングして、可読性、パフォーマンスを向上させ、ベストプラクティスに従ってください:\n\n元のコード:\n```{language}\n{code}\n```\n\n改善されたコード:\n```{language}\n","debug": "次の{language}コードをデバッグして問題を特定してください:\n\nコード:\n```{language}\n{code}\n```\n\nバグを特定して修正を提供してください:","test": "次の{language}コードに対して包括的な単体テストを生成してください:\n\nテスト対象コード:\n```{language}\n{code}\n```\n\nテストコード:\n```{language}\n"},"suggestions": {"simplified": "コードが簡略化されました","extracted_function": "関数として抽出されました","improved_format": "コード形式が改善されました"}}
}

5. Agent逻辑实现 (agent.py)

from vllm import SamplingParams
import re
from datetime import datetime
from typing import List
from .i18n import i18n, _class CodeRequest:def __init__(self, action, code="", context="", language="python", cursor_position=0, instruction="", max_tokens=512, temperature=0.7):self.action = actionself.code = codeself.context = contextself.language = languageself.cursor_position = cursor_positionself.instruction = instructionself.max_tokens = max_tokensself.temperature = temperatureclass CodingAgent:"""编码助手Agent(多语言支持)"""def __init__(self, engine, tokenizer):self.engine = engineself.tokenizer = tokenizerself.conversation_history = []async def generate_completion(self, request: CodeRequest, lang: str = 'en') -> dict:i18n.set_language(lang)prompt = i18n.get("agent.prompts.complete", language=request.language, code_before=request.code[:request.cursor_position], code_after=request.code[request.cursor_position:])result = await self._generate(prompt, request.max_tokens, request.temperature)code = self._extract_code(result)return {"result": code,"confidence": 0.85,"suggestions": [code],"metadata": {"action": i18n.get("agent.actions.complete"), "timestamp": datetime.now().isoformat()}}async def generate_code(self, request: CodeRequest, lang: str = 'en') -> dict:i18n.set_language(lang)prompt_suffix = "" if lang == 'en' else ("\nPlease comment in " + lang) if lang == 'ja' else "\n请用中文注释。"prompt = i18n.get("agent.prompts.generate", language=request.language, instruction=request.instruction, context=request.context) + prompt_suffixresult = await self._generate(prompt, request.max_tokens, request.temperature)code = self._extract_code(result)return {"result": code,"confidence": 0.9,"metadata": {"action": i18n.get("agent.actions.generate"), "language": request.language}}async def explain_code(self, request: CodeRequest, lang: str = 'en') -> dict:i18n.set_language(lang)prompt = i18n.get("agent.prompts.explain", language=request.language, code=request.code)result = await self._generate(prompt, 512, 0.7)return {"result": result,"confidence": 0.95,"metadata": {"action": i18n.get("agent.actions.explain")}}async def refactor_code(self, request: CodeRequest, lang: str = 'en') -> dict:i18n.set_language(lang)prompt = i18n.get("agent.prompts.refactor", language=request.language, code=request.code)result = await self._generate(prompt, request.max_tokens, 0.5)code = self._extract_code(result)suggestions = self._generate_suggestions(request.code, code, lang)return {"result": code,"confidence": 0.8,"suggestions": suggestions,"metadata": {"action": i18n.get("agent.actions.refactor")}}async def debug_code(self, request: CodeRequest, lang: str = 'en') -> dict:i18n.set_language(lang)prompt = i18n.get("agent.prompts.debug", language=request.language, code=request.code)result = await self._generate(prompt, request.max_tokens, 0.3)return {"result": result,"confidence": 0.85,"metadata": {"action": i18n.get("agent.actions.debug")}}async def generate_tests(self, request: CodeRequest, lang: str = 'en') -> dict:i18n.set_language(lang)prompt = i18n.get("agent.prompts.test", language=request.language, code=request.code)result = await self._generate(prompt, request.max_tokens, 0.5)code = self._extract_code(result)return {"result": code,"confidence": 0.8,"metadata": {"action": i18n.get("agent.actions.test")}}async def _generate(self, prompt: str, max_tokens: int, temperature: float) -> str:sampling_params = SamplingParams(temperature=temperature,max_tokens=max_tokens,top_p=0.95,frequency_penalty=0.1,)request_id = f"req-{datetime.now().timestamp()}"results_generator = self.engine.generate(prompt, sampling_params, request_id)async for request_output in results_generator:if request_output.finished:return request_output.outputs[0].textreturn ""def _extract_code(self, text: str) -> str:code_pattern = r'```[\w]*\n(.*?)```'matches = re.findall(code_pattern, text, re.DOTALL)return matches[0].strip() if matches else text.strip()def _generate_suggestions(self, original: str, refactored: str, lang: str) -> List[str]:i18n.set_language(lang)suggestions = []if len(refactored) < len(original):suggestions.append(i18n.get("agent.suggestions.simplified"))if "def " in refactored and "def " not in original:suggestions.append(i18n.get("agent.suggestions.extracted_function"))if refactored.count("\n") > original.count("\n"):suggestions.append(i18n.get("agent.suggestions.improved_format"))return suggestions

6. FastAPI服务入口 (server.py)

from fastapi import FastAPI, HTTPException, Header, Request
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import Optional, List, Dict, Any
import uvicorn
import asyncio
from vllm import AsyncLLMEngine, SamplingParams, AsyncEngineArgs
from transformers import AutoTokenizer
import json
import logging
from datetime import datetime
import os
import re
from i18n import i18n, _
from agent import CodingAgent, CodeRequest# 配置日志
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)# API请求模型
class CodeRequestModel(BaseModel):action: str  # 'complete', 'generate', 'explain', 'refactor', 'debug', 'test'code: Optional[str] = ""context: Optional[str] = ""language: Optional[str] = "python"cursor_position: Optional[int] = 0instruction: Optional[str] = ""max_tokens: Optional[int] = 512temperature: Optional[float] = 0.7ui_language: Optional[str] = None  # UI语言设置class CodeResponse(BaseModel):result: strconfidence: floatsuggestions: List[str] = []metadata: Dict[str, Any] = {}# 初始化FastAPI
app = FastAPI(title="Local Coding Agent API")# CORS配置(允许IDE扩展访问)
app.add_middleware(CORSMiddleware,allow_origins=["*"],allow_credentials=True,allow_methods=["*"],allow_headers=["*"],
)# vLLM引擎配置
MODEL_NAME = os.getenv("MODEL_NAME", "codellama/CodeLlama-7b-Python-hf")  # 可替换为您的模型
engine = None
tokenizer = None
agent = Noneasync def initialize_vllm():"""初始化vLLM引擎"""global engine, tokenizerlogger.info(_("server.loading_model", model=MODEL_NAME))# vLLM引擎参数engine_args = AsyncEngineArgs(model=MODEL_NAME,trust_remote_code=True,max_model_len=4096,gpu_memory_utilization=0.9,)engine = AsyncLLMEngine.from_engine_args(engine_args)tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)logger.info(_("server.model_loaded"))@app.on_event("startup")
async def startup_event():"""启动时初始化"""await initialize_vllm()global agentagent = CodingAgent(engine, tokenizer)@app.post("/api/code", response_model=CodeResponse)
async def process_code_request(request: CodeRequestModel, accept_language: Optional[str] = Header(None)):"""统一的代码处理端点"""try:if not agent:raise HTTPException(status_code=503, detail=_("server.agent_not_initialized"))# 确定使用的语言ui_lang = request.ui_language or i18n.get_language_from_header(accept_language or 'en')i18n.set_language(ui_lang)# 创建CodeRequest实例code_request = CodeRequest(action=request.action,code=request.code,context=request.context,language=request.language,cursor_position=request.cursor_position,instruction=request.instruction,max_tokens=request.max_tokens,temperature=request.temperature)# 根据action调用不同的方法action_map = {"complete": agent.generate_completion,"generate": agent.generate_code,"explain": agent.explain_code,"refactor": agent.refactor_code,"debug": agent.debug_code,"test": agent.generate_tests,}handler = action_map.get(request.action)if not handler:raise HTTPException(status_code=400, detail=_("server.unsupported_action", action=request.action))response_data = await handler(code_request, ui_lang)return CodeResponse(**response_data)except Exception as e:logger.error(_("server.request_failed", error=str(e)))raise HTTPException(status_code=500, detail=str(e))@app.get("/api/health")
async def health_check(accept_language: Optional[str] = Header(None)):"""健康检查"""lang = i18n.get_language_from_header(accept_language or 'en')i18n.set_language(lang)return {"status": "healthy","message": _("server.server_healthy"),"model": MODEL_NAME,"timestamp": datetime.now().isoformat()}@app.get("/api/capabilities")
async def get_capabilities(accept_language: Optional[str] = Header(None)):"""获取Agent能力列表"""lang = i18n.get_language_from_header(accept_language or 'en')i18n.set_language(lang)return {"actions": list(i18n.translations[lang].get("agent", {}).get("actions", {}).keys()),"languages": ["python", "javascript", "java", "cpp", "go", "rust"],"ui_languages": list(i18n.translations.keys()),"max_tokens": 2048,"model": MODEL_NAME}if __name__ == "__main__":uvicorn.run(app, host="0.0.0.0", port=8000)
http://www.dtcms.com/a/617695.html

相关文章:

  • 腾讯二面:如何保证MQ消息不丢失?重复消费如何保证幂等,本地消息表配合MQ实现最终一致性?
  • RocketMQ生产者多种API实战使用
  • UI设计公司审美积累|办公类软件界面设计巧思,效率与视觉的双重升级
  • 力扣1513——仅含 1 的子串数
  • Kali Linux 中对某(靶机)监控设备进行漏洞验证的完整流程(卧室监控学习)
  • 将LabelMe工具目标检测标注生成的json文件转换成COCO json格式
  • 什么是求解器?
  • 课后作业-2025年11月16号作业
  • C#面试题及详细答案120道(116-120)-- 综合应用
  • 【报错解决】宝塔nginx404
  • 生信数据分析流程自动化:Snakemake实战全攻略
  • 网站建设什么专业重庆品牌餐饮加盟网站建设
  • 数据库 搭建 网站泉州手机网站建设价格
  • 小米电脑管家 V5.2.0.207 新版分享,镜像链接更稳定,AI自动亮度上线,分布式文件开放使用
  • 深入理解 Vue 3 中的计算属性与侦听器:联系、区别及与函数的对比
  • 2.FPGA板卡通过电脑映射连接上网
  • RTCP包之SR和RR
  • 40 token
  • 如何在 Celestia 区块链上构建验证者节点的详细手册
  • Linux权限知识点
  • MySQL: 数据库读写分离与负载均衡的实现方式及深度分析
  • 红帽企业Linux:企业级开源操作系统领航者
  • 怎么做网站开发建一个电商平台多少钱
  • 人工智能技术- 语音语言- 05 GPT-4o 自然人机对话
  • HarmonyOS实用指南:harmonyos + 华为
  • 什么是Spring Boot 应用开发?
  • uniapp实现android/IOS消息推送
  • 汽车网站开发流程html5 网站开发软件
  • HarmonyOS:harmonyos从入门到落地
  • OpenCV(二十九):高通滤波-索贝尔算子