flink 1.20 物化表(Materialized Tables)
Flink 1.20 - 物化表(Materialized Tables)
特性概述
Flink 1.20 引入了物化表(Materialized Tables)的概念,旨在简化批处理和流处理的数据管道,并提供一致的开发体验。物化表通过查询和数据新鲜度规范定义,Flink 引擎会自动维护查询结果,确保数据的实时性。
详细说明
什么是物化表
物化表(Materialized Tables)是:
- 一个由查询定义的表
- 自动维护查询结果
- 支持定期刷新数据
- 提供数据新鲜度保证
核心特性
- 自动维护:Flink 自动执行查询并更新结果
- 数据新鲜度:可以指定数据刷新频率
- 流批统一:支持流处理和批处理模式
- 简化开发:无需手动管理数据管道
语法规则
CREATE MATERIALIZED TABLE table_name
[WITH (table_options)]
AS
SELECT ...
[REFRESH INTERVAL 'interval'];
示例代码
示例 1:基本物化表创建
-- 创建源表
CREATE TABLE orders_source (order_id INT,user_id INT,product_id INT,amount DECIMAL(10, 2),order_time TIMESTAMP(3)
) WITH ('connector' = 'kafka','topic' = 'orders','properties.bootstrap.servers' = 'localhost:9092','format' = 'json'
);-- 创建物化表(每 3 分钟刷新一次)
CREATE MATERIALIZED TABLE user_order_stats
WITH ('connector' = 'kafka','topic' = 'user_stats','properties.bootstrap.servers' = 'localhost:9092','format' = 'json','refresh' = '3 MINUTES'
)
AS
SELECT user_id,COUNT(*) as order_count,SUM(amount) as total_amount,AVG(amount) as avg_amount,MAX(order_time) as last_order_time
FROM orders_source
GROUP BY user_id;
示例 2:物化表与窗口聚合
-- 创建物化表,使用窗口聚合
CREATE MATERIALIZED TABLE hourly_order_stats
WITH ('connector' = 'kafka','topic' = 'hourly_stats','properties.bootstrap.servers' = 'localhost:9092','format' = 'json','refresh' = '1 HOUR'
)
AS
SELECT window_start,window_end,product_id,COUNT(*) as order_count,SUM(amount) as total_amount
FROM TABLE(TUMBLE(TABLE orders_source,DESCRIPTOR(order_time),INTERVAL '1' HOUR)
)
GROUP BY window_start, window_end, product_id;
示例 3:物化表与 JOIN
-- 创建用户表
CREATE TABLE users (user_id INT,user_name STRING,city STRING
) WITH ('connector' = 'jdbc','url' = 'jdbc:mysql://localhost:3306/test','table-name' = 'users','username' = 'root','password' = 'password'
);-- 创建物化表,包含 JOIN
CREATE MATERIALIZED TABLE user_order_details
WITH ('connector' = 'kafka','topic' = 'user_order_details','properties.bootstrap.servers' = 'localhost:9092','format' = 'json','refresh' = '5 MINUTES'
)
AS
SELECT u.user_id,u.user_name,u.city,COUNT(o.order_id) as order_count,SUM(o.amount) as total_amount
FROM users u
LEFT JOIN orders_source o ON u.user_id = o.user_id
GROUP BY u.user_id, u.user_name, u.city;
示例 4:物化表写入文件系统
-- 创建物化表,写入文件系统
CREATE MATERIALIZED TABLE daily_order_summary
WITH ('connector' = 'filesystem','path' = 'file:///path/to/daily_summary','format' = 'parquet','refresh' = '1 DAY'
)
AS
SELECT DATE_FORMAT(order_time, 'yyyy-MM-dd') as order_date,product_id,COUNT(*) as order_count,SUM(amount) as total_amount,AVG(amount) as avg_amount
FROM orders_source
GROUP BY DATE_FORMAT(order_time, 'yyyy-MM-dd'), product_id;
示例 5:物化表与过滤条件
-- 创建物化表,包含过滤条件
CREATE MATERIALIZED TABLE high_value_orders
WITH ('connector' = 'kafka','topic' = 'high_value_orders','properties.bootstrap.servers' = 'localhost:9092','format' = 'json','refresh' = '1 MINUTE'
)
AS
SELECT order_id,user_id,amount,order_time
FROM orders_source
WHERE amount > 1000;
示例 6:物化表与复杂聚合
-- 创建物化表,包含复杂聚合
CREATE MATERIALIZED TABLE product_statistics
WITH ('connector' = 'kafka','topic' = 'product_stats','properties.bootstrap.servers' = 'localhost:9092','format' = 'json','refresh' = '10 MINUTES'
)
AS
SELECT product_id,COUNT(*) as order_count,COUNT(DISTINCT user_id) as unique_customers,SUM(amount) as total_revenue,AVG(amount) as avg_order_value,MIN(amount) as min_order_value,MAX(amount) as max_order_value,STDDEV(amount) as stddev_order_value
FROM orders_source
GROUP BY product_id;
示例 7:物化表与时间函数
-- 创建物化表,使用时间函数
CREATE MATERIALIZED TABLE time_based_stats
WITH ('connector' = 'kafka','topic' = 'time_stats','properties.bootstrap.servers' = 'localhost:9092','format' = 'json','refresh' = '1 HOUR'
)
AS
SELECT EXTRACT(HOUR FROM order_time) as hour_of_day,EXTRACT(DAY_OF_WEEK FROM order_time) as day_of_week,product_id,COUNT(*) as order_count,SUM(amount) as total_amount
FROM orders_source
GROUP BY EXTRACT(HOUR FROM order_time),EXTRACT(DAY_OF_WEEK FROM order_time),product_id;
示例 8:物化表与子查询
-- 创建物化表,使用子查询
CREATE MATERIALIZED TABLE top_customers
WITH ('connector' = 'kafka','topic' = 'top_customers','properties.bootstrap.servers' = 'localhost:9092','format' = 'json','refresh' = '1 HOUR'
)
AS
SELECT user_id,total_amount,order_count
FROM (SELECT user_id,SUM(amount) as total_amount,COUNT(*) as order_countFROM orders_sourceGROUP BY user_id
) t
WHERE total_amount > 10000
ORDER BY total_amount DESC
LIMIT 100;
示例 9:修改物化表
-- 修改物化表的查询
ALTER MATERIALIZED TABLE user_order_stats
AS
SELECT user_id,COUNT(*) as order_count,SUM(amount) as total_amount,AVG(amount) as avg_amount,-- 新增字段MAX(order_time) as last_order_time,MIN(order_time) as first_order_time
FROM orders_source
GROUP BY user_id;-- 修改物化表的刷新间隔
ALTER MATERIALIZED TABLE user_order_stats
SET ('refresh' = '5 MINUTES');
示例 10:删除物化表
-- 删除物化表
DROP MATERIALIZED TABLE user_order_stats;
Java API 示例
示例 1:使用 Table API 创建物化表
import org.apache.flink.table.api.*;public class MaterializedTableExample {public static void main(String[] args) {TableEnvironment tEnv = TableEnvironment.create(EnvironmentSettings.newInstance().inStreamingMode().build());// 创建源表tEnv.executeSql("CREATE TABLE orders_source (" +" order_id INT," +" user_id INT," +" amount DECIMAL(10, 2)," +" order_time TIMESTAMP(3)" +") WITH (" +" 'connector' = 'kafka'," +" 'topic' = 'orders'," +" 'properties.bootstrap.servers' = 'localhost:9092'," +" 'format' = 'json'" +")");// 创建物化表tEnv.executeSql("CREATE MATERIALIZED TABLE user_order_stats " +"WITH (" +" 'connector' = 'kafka'," +" 'topic' = 'user_stats'," +" 'properties.bootstrap.servers' = 'localhost:9092'," +" 'format' = 'json'," +" 'refresh' = '3 MINUTES'" +") " +"AS " +"SELECT " +" user_id, " +" COUNT(*) as order_count, " +" SUM(amount) as total_amount " +"FROM orders_source " +"GROUP BY user_id");}
}
测试用例
测试类 1:物化表基本功能测试
import org.apache.flink.table.api.*;
import org.junit.Test;public class MaterializedTableTest {@Testpublic void testCreateMaterializedTable() {TableEnvironment tEnv = TableEnvironment.create(EnvironmentSettings.newInstance().inStreamingMode().build());// 创建源表tEnv.executeSql("CREATE TABLE test_source (" +" id INT," +" value DECIMAL(10, 2)" +") WITH (" +" 'connector' = 'values'," +" 'data-id' = '1'" +")");// 创建物化表tEnv.executeSql("CREATE MATERIALIZED TABLE test_materialized " +"WITH (" +" 'connector' = 'print'," +" 'refresh' = '1 MINUTE'" +") " +"AS " +"SELECT id, SUM(value) as total " +"FROM test_source " +"GROUP BY id");}
}
注意事项
-
刷新间隔:
- 根据业务需求设置合适的刷新间隔
- 过短的间隔可能导致性能问题
- 过长的间隔可能导致数据不够新鲜
-
数据一致性:
- 物化表是查询结果的快照
- 刷新时可能短暂不一致
- 适合最终一致性场景
-
存储成本:
- 物化表需要存储查询结果
- 考虑存储成本和数据保留策略
-
查询复杂度:
- 复杂查询可能影响刷新性能
- 建议优化查询性能
-
连接器支持:
- 需要连接器支持写入操作
- Kafka、文件系统等连接器支持良好
最佳实践
- 选择合适的刷新间隔:根据业务需求平衡数据新鲜度和性能
- 优化查询性能:确保物化表的查询能够高效执行
- 监控物化表:监控刷新状态和数据质量
- 合理使用:物化表适合聚合和汇总场景
相关 JEP 和 FLIP
参考资料
- Apache Flink 1.20 Release Notes
- Flink SQL Materialized Tables
