自然科学笔记-微积分
(2018年考研数学三(16))平面区域D是由 x=0x=0x=0, y=3(1−x2)y=\sqrt{3(1-x^2)}y=3(1−x2), y=3xy=\sqrt{3}xy=3x 围成的,求二重积分 I=∬Dx2dxdyI= \iint \limits_D x^2 \mathrm{d}x \mathrm{d}yI=D∬x2dxdy。
% 通用方法,适用于各种方程
figure;
hold on;% 创建网格
[x, y] = meshgrid(linspace(-2, 2, 500));% 定义三个方程
f1 = sqrt(3) .* x - y; % 直线y = sqrt(3) * x
f2 = x.^2 + y.^2/3 - 1; % 椭圆: x^2/9 + y^2/4 = 1
f3 = x; % 直线 x = 0% 绘制等高线(方程曲线)
contour(x, y, f1, [0 0], 'r-', 'LineWidth', 2); % f1=0
contour(x, y, f2, [0 0], 'b-', 'LineWidth', 2); % f2=0
contour(x, y, f3, [0 0], 'g-', 'LineWidth', 2); % f3=0% 填充满足所有不等式的区域
% 例如:在f1以上、f2椭圆内、f3右侧的区域
region = (f1 <= 0) & (f2 <= 0) & (f3 >= 0);
contourf(x, y, double(region), [0.5 0.5], 'FaceColor', 'cyan', 'FaceAlpha', 0.3);grid on;
axis equal;
xlim([-2, 2]);
ylim([-2, 2]);
xlabel('x');
ylabel('y');
title('三个方程围成的区域');
legend('x^2+y^2=4', 'x^2/9+y^2/4=1', 'y=x^2', 'D');
legend on;hold off;

黄色部分是平面区域D。先对y积分,上下界是椭圆和直线方程。再对x积分,上下界是000到22\frac{\sqrt{2}}{2}22。
I=∫022dx∫3x3(1−x2)x2dy=3(∫022x21−x2dx−∫x22x3dx)=3(I1−I2)\begin{aligned} I &= \int_0^{\frac{\sqrt{2}}{2}} \mathrm{d}x \int_{\sqrt{3}x}^{\sqrt{3(1-x^2)}} x^2 \mathrm{d}y \\ &= \sqrt{3} (\int_0^{\frac{\sqrt{2}}{2}} x^2\sqrt{1-x^2} \mathrm{d}x- \int_x^{\frac{\sqrt{2}}{2}}x^3 \mathrm{d}x) \\ &= \sqrt{3}(I_1-I_2) \end{aligned}I=∫022dx∫3x3(1−x2)x2dy=3(∫022x21−x2dx−∫x22x3dx)=3(I1−I2)
I1=x=sinθ∫0π4sin2θcos2θdθ=14∫0π4sin22θdθ=18∫0π41−cos4θdθ=18(θ−14sin4θ)∣01=π32\begin{aligned} I_1 &\xlongequal{\quad x=\sin\theta\quad} \int_0^\frac{\pi}{4} \sin^2\theta \cos^2\theta \mathrm{d}\theta \\ &= \frac{1}{4} \int_0^\frac{\pi}{4} \sin^2 2\theta \mathrm{d}\theta \\ &= \frac{1}{8} \int_0^\frac{\pi}{4} 1-\cos 4\theta \mathrm{d}\theta \\ &= \left.{\frac{1}{8}(\theta-\frac{1}{4}\sin 4\theta)} \right|_0^1 \\ &= \frac{\pi}{32} \end{aligned}I1x=sinθ∫04πsin2θcos2θdθ=41∫04πsin22θdθ=81∫04π1−cos4θdθ=81(θ−41sin4θ)01=32π
I2=14x4∣022=116\begin{aligned} I_2 = \left.{\frac{1}{4}x^4} \right|_0^{\frac{\sqrt{2}}{2}} = \frac{1}{16} \end{aligned}I2=41x4022=161
I=3(I1−I2)=3(π32−116)=3(π−2)32\begin{aligned} I&= \sqrt{3}(I_1-I_2)\\ &= \sqrt{3}(\frac{\pi}{32}-\frac{1}{16})\\ &= \frac{\sqrt{3}(\pi-2)}{32} \end{aligned}I=3(I1−I2)=3(32π−161)=323(π−2)
计算二重积分I=∫0π∫0xsintπ−tdtdxI= \int_0^\pi \int_0^x \frac{\sin t}{\pi-t} \mathrm{d}t \mathrm{d}xI=∫0π∫0xπ−tsintdtdx
I=∫xπ∫0xsintπ−tdtdx=∫0πdt∫tπsintπ−tdx=∫0πdtsintπ−tx∣tπ=∫0πdtsintπ−t×(π−t)=∫0πsintdt=−cost∣0π=2\begin{aligned}
I
&= \int_x^\pi \int_0^x \frac{\sin t}{\pi-t} \mathrm{d}t \mathrm{d}x \\
&= \int_0^\pi \mathrm{d}t \int_t^\pi \frac{\sin t}{\pi-t} \mathrm{d}x \\
&= \int_0^\pi \mathrm{d}t \left.\frac{\sin t}{\pi-t}x \right|_t^\pi \\
&= \int_0^\pi \mathrm{d}t \frac{\sin t}{\pi-t} \times (\pi-t) \\
&= \int_0^\pi \sin t \mathrm{d}t \\
&= \left.-\cos t \right|_0^\pi \\
&= 2
\end{aligned}I=∫xπ∫0xπ−tsintdtdx=∫0πdt∫tππ−tsintdx=∫0πdtπ−tsintxtπ=∫0πdtπ−tsint×(π−t)=∫0πsintdt=−cost∣0π=2
