当前位置: 首页 > news >正文

【C++:AVL树】深入理解AVL树的平衡之道:从原理、旋转到完整实现代码

🔥艾莉丝努力练剑:个人主页

专栏传送门:《C语言》、《数据结构与算法》、C/C++干货分享&学习过程记录、Linux操作系统编程详解、笔试/面试常见算法:从基础到进阶、测试开发要点全知道

⭐️为天地立心,为生民立命,为往圣继绝学,为万世开太平


🎬艾莉丝的简介:


🎬艾莉丝的C++专栏简介:

​​​


目录

C++的两个参考文档

1  ~>  初识AVL树

2  ~>  AVL树要点解析

2.1  AVL树的平衡因子逻辑

2.2  AVL树的插入

2.2.1  AVL树插入一个值的过程

2.2.2  更新平衡因子

2.2.2.1  更新原则

2.2.2.2  更新停止条件

2.2.3  示例演示

3  ~>  探讨AVL树的旋转问题

3.1  右单旋转

3.1.1  情况1:插入前a / b / c高度h == 0

3.1.2  情况2:插入前a / b / c高度h == 1

3.1.3  情况3:插入前a / b / c高度h == 2

3.2  左单旋转

3.3  左右双旋

3.3.1  情况1:插入前a / b / c高度h == 0

3.3.2  情况2:插入前a / b / c高度h == 1

3.4  右左双旋

4  ~>  AVL树的实现层

4.1  AVL树的结构

4.2  AVL树的插入

4.3  AVL树的旋转:实现

4.3.1  右单旋转

4.3.2  左单旋转

4.3.3  左右双旋

4.3.4  右左双旋

4.4  AVL树的删除

5  ~>  完整代码示例与实践演示(测试)

AVLTree.h:

Test.cpp:

TestAVLTree1()函数测试

TestAVLTree2()函数测试

6  ~>  调试技巧

7  ~>  关于AVL树和红黑树这部分知识的学习的说明

结尾


C++的两个参考文档

老朋友(非官方文档):

官方文档(同步更新):



1  ~>  初识AVL树

AVL树是最先发明的自平衡二叉查找树,AVL是一颗空树,或者具备下列性质的二叉搜索树:它的
左右子树都是AVL树,且左右子树的高度差的绝对值不超过1。

AVL树是一颗高度平衡搜索二叉树,通过控制高度差去控制平衡。

AVL树得名于它的发明者G.M.Adelson-Velsky和E.M.Landis是两个前苏联的科学家,他们在1962
年的论文《An algorithm for the organization of information》中发表了它。

AVL树实现这里我们引入一个平衡因子(balancefactor)的概念,每个结点都有一个平衡因子,任何结点的平衡因子等于右子树的高度减去左子树的高度,也就是说任何结点的平衡因子等于0 / 1 / -1,AVL树并不是必须要平衡因子,但是有了平衡因子可以更方便我们去进行观察和控制树是否平衡,类似于一个风向标,不用平衡因子也可以实现AVL树,但是那样会比较绕,大差不差,最终还是来控制高度

AVL树是高度平衡搜索二叉树,要求高度差不超过1,为什么不是高度差为0呢?0不是更好的平衡吗?我们用画图软件实践操作一下就会发现:不是不想这样设计,而是有些情况是做不到高度差是0的——比如一棵树是2个结点,4个结点等情况下,高度差最好就是1,无法做到高度差是0——也就是说,不是不想做,而是做不到!

AVL树整体结点数量和分布和完全二叉树类似,高度可以控制在logN,那么增删查改的效率也可
以控制在O(logN),相比二叉搜索树有了本质的提升。


2  ~>  AVL树要点解析

2.1  AVL树的平衡因子逻辑

2.2  AVL树的插入

2.2.1  AVL树插入一个值的过程

1、插入一个值按二叉搜索树规则进行插入。

2、新增结点以后,只会影响祖先结点的高度,也就是可能会影响部分祖先结点的平衡因子,所以更新从新增结点->根结点路径上的平衡因子,实际中最坏情况下要更新到根,有些情况更新到中间就可以停止了,具体情况我们下面再详细分析。

3、更新平衡因子过程中没有出现问题,则插入结束。

4、更新平衡因子过程中出现不平衡,对不平衡子树旋转,旋转后本质调平衡的同时,本质降低了子树的高度,不会再影响上一层,所以插入结束。

2.2.2  更新平衡因子

2.2.2.1  更新原则

平衡因子 = 右子树高度 - 左子树高度

只有子树高度变化才会影响当前结点平衡因子;

插入结点,会增加高度,所以新增结点在parent的右子树,parent的平衡因子++,新增结点在parent的左子树,parent平衡因子--;

parent所在子树的高度是否变化决定了是否会继续往上更新。

2.2.2.2  更新停止条件

1、更新后parent的平衡因子等于0,更新中parent的平衡因子变化为-1->0或者1->0,说明更新前
parent子树一边高一边低,新增的结点插入在低的那边,插入后parent所在的子树高度不变,不会
影响parent的父亲结点的平衡因子,更新结束。

2、更新后parent的平衡因子等于1或-1,更新前更新中parent的平衡因子变化为0->1或者0->-1,说
明更新前parent子树两边一样高,新增的插入结点后,parent所在的子树一边高一边低,parent所
在的子树符合平衡要求,但是高度增加了1,会影响parent的父亲结点的平衡因子,所以要继续向
上更新。

3、更新后parent的平衡因子等于2或-2,更新前更新中parent的平衡因子变化为1~>2或者-1~>-2,说明更新前parent子树一边高一边低,新增的插入结点在高的那边,parent所在的子树高的那边更高了,破坏了平衡,parent所在的子树不符合平衡要求,需要旋转处理,旋转的目标有两个——

4、不断更新,更新到根,跟的平衡因子是1或-1也停止了。

2.2.3  示例演示

更新到10结点,平衡因子为2,10所在的子树已经不平衡,需要旋转处理——

更新到中间结点,3为根的子树高度不变,不会影响上一层,更新结束——

最坏更新到根停止——


3  ~>  探讨AVL树的旋转问题

3.1  右单旋转

如下图,10为根的树,有a / b / c抽象为三棵高度为h的子树(h >= 0),a / b / c均符合AVL树的要求。10可能是整棵树的根,也可能是一个整棵树中局部的子树的根。这里a / b / c是高度为h的子树,是一种概括抽象表示,他代表了所有右单旋的场景,实际右单旋形态有很多种,具体图2 / 图3 / 图4 / 图5进行了详细描述。

在a子树中插入一个新结点,导致a子树的高度从h变成h + 1,不断向上更新平衡因子,导致10的平
衡因子从-1变成-2,10为根的树左右高度差超过1,违反平衡规则。10为根的树左边太高了,需要
往右边旋转,控制两棵树的平衡。

旋转核心步骤,因为5 < b子树的值 < 10,将b变成10的左子树,10变成5的右子树,5变成这棵树新的根,符合搜索树的规则,控制了平衡,同时这棵的高度恢复到了插入之前的h + 2,符合旋转原则。如果插入之前10整棵树的一个局部子树,旋转后不会再影响上一层,插入结束了。

下面的四种情况演示只是作为参考, 比较抽象,具象图画不完的,但是抽象图可以很好地代表具象图,具象图也是这个逻辑,大家作为参考就好了——

3.1.1  情况1:插入前a / b / c高度h == 0

3.1.2  情况2:插入前a / b / c高度h == 1

3.1.3  情况3:插入前a / b / c高度h == 2

3.1.4  情况4:插入前a / b / c高度h == 3

3.2  左单旋转

如下图所展示的是10为根的树,有a / b / c抽象为三棵高度为h的子树(h >= 0),a / b / c均符合AVL树的要求。10可能是整棵树的根,也可能是一个整棵树中局部的子树的根。这里a / b / c是高度为h的子树,是一种概括抽象表示,他代表了所有右单旋的场景,实际右单旋形态有很多种,具体跟上面左旋类似。

在a子树中插入一个新结点,导致a子树的高度从h变成h + 1,不断向上更新平衡因子,导致10的平
衡因子从1变成2,10为根的树左右高度差超过1,违反平衡规则。10为根的树右边太高了,需要往
左边旋转,控制两棵树的平衡。

旋转核心步骤,因为10 < b子树的值 < 15,将b变成10的右子树,10变成15的左子树,15变成这棵
树新的根,符合搜索树的规则,控制了平衡,同时这棵的高度恢复到了插入之前的h + 2,符合旋转原则。如果插入之前10整棵树的一个局部子树,旋转后不会再影响上一层,插入结束了。

3.3  左右双旋

通过下面情况1和情况2的两张图,我们可以观察到:当左边高时,如果插入位置不是在a子树,而是插入在b子树,b子树高度从h变成h + 1,引发旋转,右单旋无法解决问题,右单旋后,我们的树依旧不平衡。右单旋解决的纯粹的左边高,但是插入在b子树中,10为跟的子树不再是单纯的左边高,对于10是左边高,但是对于5是右边高,需要用两次旋转才能解决——以5为旋转点进行一个左单旋,以10为旋转点进行一个右单旋,这棵树就平衡了。

这个顺序是有讲究的,不能调换,这里不能说先左单旋再右单旋,大家可以自己去画图软件上面画一画,这里一定是左单旋再右单旋,先变成纯粹的左单旋,再右单旋,才平衡。

3.3.1  情况1:插入前a / b / c高度h == 0

3.3.2  情况2:插入前a / b / c高度h == 1

上面两张图分别为左右双旋中h == 0和h == 1两种情况的具体场景的流程分析,下面我们将a / b / c子树抽象为高度h的AVL子树进行分析,另外我们需要把b子树的细节进一步展开为8和左子树高度为h -1的e和f子树,因为我们要以b的父亲节点5为旋转点进行左单旋,左单旋需要动b树中的左子树。b子树中新增结点的位置不同,平衡因子更新的细节也不同,通过观察8的平衡因子不同,这里我们要分三个场景讨论——

3.4  右左双旋

了解了左右双旋转的实现逻辑之后,右左双旋的流程也可以自己试着分析一下。


4  ~>  AVL树的实现层

4.1  AVL树的结构

4.2  AVL树的插入

AVL树的插入,跟搜索二叉树的插入规则一样,多了一个平衡因子(右子树高度 - 左子树高度),其它都是一样的,我们可以直接复用搜索二叉树的插入即可,不过还是有区别的——

4.3  AVL树的旋转:实现

4.3.1  右单旋转

4.3.2  左单旋转

4.3.3  左右双旋

4.3.4  右左双旋

4.4  AVL树的删除

AVL树的删除我们不做过多介绍,很复杂,像前面介绍二叉搜索树的时候也是,插入并不复杂,但是删除非常麻烦,AVL树底层是一棵搜索二叉树,所以它的删除也是非常棘手的一个问题!

如果uu们感兴趣,可以去看这本书——

图书推荐:《殷人昆 数据结构:用面向对象方法与C++语言描述》

艾莉丝这里简单介绍一下AVL树删除的一个大致过程:用搜索二叉树的方式进行删除——


5  ~>  完整代码示例与实践演示(测试)

AVLTree.h:

#pragma once
#include<iostream>
#include<vector>
using namespace std;
#include<assert.h>// AVL树的结构
template<class K,class V>
struct AVLTreeNode
{// 需要parent指针,后序更新平衡因子的时候,就可以看到pair<K, V> _kv;AVLTreeNode<K, V>* _left;AVLTreeNode<K, V>* _right;AVLTreeNode<K, V>* _parent;int _bf; // balance factor:平衡因子//节点的构造AVLTreeNode(const pair<K,V>& kv):_kv(kv),_left(nullptr),_right(nullptr),_parent(nullptr),_bf(0){ }
};template<class K, class V>
struct AVLTree
{typedef AVLTreeNode<K, V> Node;
public:// 这里AVL树的插入和搜索二叉树的插入规则是一样的,就多了一个平衡因子(右子树高度 - 左子树高度)bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv); // 这里把搜索二叉树那里的key改成kv(pair的结构,包含key和value)return true;}Node* parent = nullptr;Node* cur = _root;while (cur){// 比kv_first大就往右边走,比kv_first小就往左边走,相等就return falseif (cur->_kv.first < kv.first) // pair结果做kv时,first是key,second是value{parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);// cur->_bf = 0;if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}// 构建好了三叉链结构:父亲指向孩子,孩子反过来也指向了父亲cur->_parent = parent;// 控制平衡:对平衡要进行单独的控制// 1、更新平衡因子while (parent){if (cur == parent->_left){parent->_bf--;}else{parent->_bf++;}if (parent->_bf == 0){// parent所在的子树的高度不变,不会再影响上一层,更新结束break;}else if (parent->_bf == 1 || parent->_bf == -1){// parent所在的子树的高度不变,会再影响上一层,继续向上更新cur = parent;parent = parent->_parent;}else if (parent->_bf == 2 || parent->_bf == -2){// parent所在的子树已经不平衡了,需要旋转处理if (parent->_bf == -2 && cur->_bf == -1){RotateR(parent);}else if (parent->_bf == 2 && cur->_bf == 1){RotateL(parent);}else if (parent->_bf == -2 && cur->_bf == 1){RotateLR(parent);}else if (parent->_bf == 2 && cur->_bf == -1){RotateRL(parent);}else{assert(false);}break;}else{assert(false);}}return true;}// 右单旋void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;Node* parentParent = parent->_parent;subL->_right = parent;parent->_parent = subL;if (parent == _root) // 根节点{_root = subL;subL->_parent = nullptr;}else{if (parentParent->_left == parent) // 如果是子树{parentParent->_left = subL;}else{parentParent->_right = subL;   // 如果是根节点}subL->_parent = parentParent;}parent->_bf = subL->_bf = 0;}// 左单旋void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;//parent->_right = subR->_left;parent->_right = subRL;if (subRL)subRL->_parent = parent;//subRL->_right;Node* parentParent = parent->_parent;subR->_left = parent;parent->_parent = subR;//if (parentParent == nullptr)if (parent == _root){_root = subR;subR->_parent = nullptr;}else{if (parent == parentParent->_left){parentParent->_left = subR;}else{parentParent->_right = subR;}subR->_parent = parentParent;}parent->_bf = subR->_bf = 0;}// 左右双旋void RotateLR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RotateL(parent->_left);RotateR(parent);// 平衡因子的条件if (bf == 0){parent->_bf = 0;subL->_bf = 0;subLR->_bf = 0;}else if (bf == 1){parent->_bf = 0;subL->_bf = -1;subLR->_bf = 0;}else if (bf == -1){parent->_bf = 1;subL->_bf = 0;subLR->_bf = 0;}else{assert(false);}}// 右左双旋void RotateRL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RotateR(parent->_right);RotateL(parent);if (bf == 0){subR->_bf = 0;subRL->_bf = 0;parent->_bf = 0;}else if (bf == 1){subR->_bf = 0;subRL->_bf = 0;parent->_bf = -1;}else if (bf == -1){subR->_bf = 1;subRL->_bf = 0;parent->_bf = 0;}else{assert(false);}}// 查找Node* Find(const K& key){Node* cur = _root;while (cur){if (cur->_kv.first < key){cur = cur->_right;}else if (cur->_kv.first > key){cur = cur->_left;}else{return cur;}}return nullptr;}int Size(){return _Size(_root);}int Height(){return _Height(_root);}bool IsBalanceTree(){return _IsBalanceTree(_root); // 不方便放根节点,所以套一层娃}void InOrder(){_InOrder(_root);cout << endl;}private:// 传根,不能直接传,外部调用内部int _Size(Node* root){if (root == nullptr)return 0;return _Size(root->_left) + _Size(root->_right) + 1;}// 求高度int _Height(Node* root){if (root == nullptr)return 0;int lh = _Height(root->_left);int rh = _Height(root->_right);return lh > rh ? lh + 1 : rh + 1; // 后序求}// 实现要写成递归,IsBalance// 递归计算平衡因子绝对值是否<=2bool _IsBalanceTree(Node* root){// 空树也是AVL树 if (nullptr == root)return true;// 计算pRoot结点的平衡因子:即pRoot左右子树的高度差 // 求出左右子树的高度int lh = _Height(root->_left);int rh = _Height(root->_right);// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者 // pRoot平衡因子的绝对值超过1,则一定不是AVL树 if (rh - lh != root->_bf || abs(root->_bf) >= 2){cout << root->_kv.first << ":平衡因子异常" << endl;return false;}// pRoot的左和右如果都是AVL树,则该树⼀定是AVL树 return _IsBalanceTree(root->_left) && _IsBalanceTree(root->_right); // 递归检测左子树和右子树}int _InOrder(Node* root){if (root == nullptr)return 0;_InOrder(root->_left);cout << root->_kv.first << ":" << root->_kv.second << endl;_InOrder(root->_right);}private:Node* _root = nullptr;
};

Test.cpp:

#define  _CRT_SECURE_NO_WARNINGS  1#include"AVLTree.h"void TestAVLTree1()
{AVLTree<int, int> t;// 常规的测试例 //int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };// 特殊的带有双旋场景的测试用例 int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };for (auto e : a){if (e == 14){int i = 0;}t.Insert({ e,e });cout << e << "->" << t.IsBalanceTree() << endl;}//t.InOrder();cout << t.IsBalanceTree() << endl;
}// 插入一堆随机值,测试平衡,顺便测试一下高度和性能
void TestAVLTree2()
{const int N = 100000;vector<int> v;v.reserve(N);srand(time(0));for (size_t i = 0; i < N; i++){v.push_back(rand() + i);}size_t begin2 = clock();AVLTree<int, int> t;for (auto e : v){t.Insert(make_pair(e, e));}size_t end2 = clock();cout << "Insert:" << end2 - begin2 << endl;cout << t.IsBalanceTree() << endl;cout << "Height:" << t.Height() << endl;cout << "Size:" << t.Size() << endl;size_t begin1 = clock();// 确定在的值 /*for (auto e : v){t.Find(e);}*/// 随机值 for (size_t i = 0; i < N; i++){t.Find((rand() + i));}size_t end1 = clock();cout << "Find:" << end1 - begin1 << endl;
}int main()
{TestAVLTree1();//TestAVLTree2();return 0;
}

TestAVLTree1()函数测试

TestAVLTree2()函数测试


6  ~>  调试技巧

有些uu喜欢通过对比代码的方式来解决BUG,看看和别人写的哪里不一样?其实这是在走捷径!学习的意义:学知识,就是——锻炼学习能力、分析能力、解决问题能力。对比代码、问别人、求助于AI……其实后面的两种能力都没有得到锻炼,这对于我们今后的工作是没有好处的。

调试的技巧有很多种,我们平常通过简单地调试实际上只能解决一小部分问题,很多问题仅凭调试是解决不了问题的。我们可以打印、可以打印日志(这个在公司里面很常用)——


7  ~>  关于AVL树和红黑树这部分知识的学习的说明

AVL树、红黑树本质上不用特别熟悉,手撕链表什么的代表代表你的能力。

这部分知道旋转和插入怎么做的即可。


结尾

往期回顾:

【C++:map和set的使用】C++ map/multimap完全指南:从红黑树原理入门到高频算法实战

结语:都看到这里啦!那请大佬不要忘记给博主来个“一键四连”哦! 

🗡博主在这里放了一只小狗,大家看完了摸摸小狗放松一下吧!🗡

૮₍ ˶ ˊ ᴥ ˋ˶₎ა

http://www.dtcms.com/a/577807.html

相关文章:

  • 【HOT100|1 LeetCode 1. 两数之和】
  • 中专服装设计专业职业发展指南
  • RHCE练习
  • 旅行社网站建设规划书论文网站开发需要多钱
  • 云南抖音推广南昌快速优化排名
  • 【GESP2509四级】排兵布阵
  • 矩阵的运算
  • linux TCP
  • 专业做网站报价安徽网站建设系统
  • 网站建设对产品推销作用大吗wordpress主题购物
  • 基于SpringMVC的在线文档管理系统3yy4cg58(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。
  • Qt中使用系统级全局热键
  • 零基础新手小白快速了解掌握服务集群与自动化运维(十八)监控模块--Zabbix监控--Rocky9基于MySQL安装Zabbix7
  • pc微信ccd 3.55算法。
  • DeepSpeed 分布式训练
  • 昭和仙君(五十七)标签票据模板渲染技术——东方仙盟筑基期
  • QScrollArea技术详解:构建流畅滚动体验
  • 基础数据结构之链表的反转链表:反转整个链表(leecode 206题 简单题)
  • 广东省网站集约化建设方案建设网站需要哪个软件
  • 网站开发技术视频教程wordpress添加菜单分类目录是灰的
  • 一种双重形式化表征方法:为人工智能与人类智慧的协同进化提供了全新的方法论基础
  • ETCD 权限配置
  • 数据结构(c++版):深入理解哈希表
  • HIKVISION前端一面面经整理
  • Rocky9基于MySQL安装Zabbix7
  • 安庆网站制作1688阿里巴巴国际站首页
  • 阿里云微服务引擎 MSE 及 API 网关 2025 年 10 月产品动态
  • 太原网站建设内蒙古建设工程造价信息网官网中项网
  • Oracle 19C RAC下TRUNCATE TABLE的REUSE STORAGE选项作用和风险浅析!
  • CentOS 7 Oracle 11g RAC+DataGuard 分阶段静默部署脚本