当前位置: 首页 > news >正文

实验四 综合数据流处理-Storm案例实现

前言

storm的单个搭建以及集群搭建在csdn上已经有博客记录了,但是案例实现却没有写,同时这次实验老师的文档里面并没有记录清楚最后的效果是什么样,以及也没有给pom环境,导致实现起来会有点迷茫,本篇博客就是旨在带领大家实现案例。

pom文件

这里我给出我的maven的环境文件,大家可以根据这个文件进行修改自己的pom

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><groupId>org.example</groupId><artifactId>storm_project</artifactId><version>1.0-SNAPSHOT</version><properties><maven.compiler.source>17</maven.compiler.source><maven.compiler.target>17</maven.compiler.target><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding></properties><dependencies><!--  ========== 添加 Storm 相关依赖 ==========  --><!--  Apache Storm Core  --><dependency><groupId>org.apache.storm</groupId><artifactId>storm-core</artifactId><version>2.8.2</version><!--  本地测试时注释掉 provided,集群部署时取消注释  --><!--  <scope>provided</scope>  --></dependency><!--  Storm Kafka Integration  --><dependency><groupId>org.apache.storm</groupId><artifactId>storm-kafka-client</artifactId><version>2.8.2</version></dependency><!--  Kafka Clients (确保版本兼容)  --><dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId><version>3.4.0</version></dependency><!--  添加SLF4J日志实现,解决SLF4J警告  -->
<!--        <dependency>-->
<!--            <groupId>org.slf4j</groupId>-->
<!--            <artifactId>slf4j-simple</artifactId>-->
<!--            <version>1.7.36</version>-->
<!--        </dependency>--><!--  添加Apache Commons依赖  --><dependency><groupId>org.apache.commons</groupId><artifactId>commons-lang3</artifactId><version>3.12.0</version></dependency><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId><version>8.0.33</version></dependency></dependencies>
</project>

DataSourceSpout2类

这个类的目的是从csv中读取数据,需要修改的地方就是文件的路径文件的目录,以及文件的编码格式,编码格式错误可能导致乱码。
this.fileNames = Arrays.asList(“E:\Real-time\experiment\two\lab2-data\stock-part1.utf8.csv”,
“E:\Real-time\experiment\two\lab2-data\stock-part2.utf8.csv”);#文件路径
this.directoryPath = “E:\Real-time\experiment\two\lab2-data”;#文件目录
InputStreamReader isr = new InputStreamReader(fis, “UTF-8”);#文件编码格式

package org.example;//import org.apache.storm.shade.org.apache.commons.lang.StringUtils;import org.apache.storm.spout.SpoutOutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseRichSpout;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Values;
import org.apache.storm.utils.Utils;import java.io.*;
import java.util.*;/*** 从产生的股票文件中读取数据*/
public class DataSourceSpout2 extends BaseRichSpout {private SpoutOutputCollector spoutOutputCollector;private Set<String> processedData; // 用于存储已处理的数据private BufferedReader reader; // 文件读取器private List<String> fileNames;private String directoryPath;@Overridepublic void open(Map map, TopologyContext topologyContext, SpoutOutputCollectorspoutOutputCollector) {this.spoutOutputCollector = spoutOutputCollector;this.processedData = new HashSet<>();this.fileNames = Arrays.asList("E:\\Real-time\\experiment\\two\\lab2-data\\stock-part1.utf8.csv","E:\\Real-time\\experiment\\two\\lab2-data\\stock-part2.utf8.csv");this.directoryPath = "E:\\Real-time\\experiment\\two\\lab2-data";}@Overridepublic void nextTuple() {File directory = new File(directoryPath);File[] files = directory.listFiles((dir, name) -> name.toLowerCase().endsWith(".csv"));if (files != null) {for (File file : files) {try {FileInputStream fis = new FileInputStream(file);InputStreamReader isr = new InputStreamReader(fis, "UTF-8");BufferedReader reader = new BufferedReader(isr);// 跳过第一行reader.readLine();String line;while ((line = reader.readLine()) != null) {if (!processedData.contains(file.getName() + ":" + line)) {spoutOutputCollector.emit(new Values(file.getName(),line));processedData.add(file.getName() + ":" + line);}}reader.close();} catch (IOException e) {throw new RuntimeException(e);}}}// 添加适当的延迟,以避免循环过快Utils.sleep(1000);}@Overridepublic void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) {outputFieldsDeclarer.declare(new Fields("key", "message"));}
}

WriteTopology类

这个类是实现将刚刚得到的数据发送给kafka的

修改kafka地址

private static final String BOOTSTRAP_SERVERS = “192.168.43.219:19092”; //kafka 地址,这个地址跟flink实验里面填写的相同就可以。

修改话题名

private static final String TOPIC_NAME = “foo”;#这里要注意本实验需要一个唯一的话题名,在这里以及后面的文件和kafka中填写相同的话题名

添加nimbus地址

config.put(“nimbus.seeds”, Arrays.asList(“192.168.43.219”)); // 这里是我自己添加的,由于我的代码会报错找不到nimbus在这里添加之后写上自己的ip就可以找到了

package org.example;import org.apache.storm.Config;
import org.apache.storm.LocalCluster;
import org.apache.storm.StormSubmitter;
import org.apache.storm.generated.AlreadyAliveException;
import org.apache.storm.generated.AuthorizationException;
import org.apache.storm.generated.InvalidTopologyException;
import org.apache.storm.kafka.bolt.KafkaBolt;
import org.apache.storm.kafka.bolt.mapper.FieldNameBasedTupleToKafkaMapper;
import org.apache.storm.kafka.bolt.selector.DefaultTopicSelector;
import org.apache.storm.topology.TopologyBuilder;import java.util.Arrays;
import java.util.Properties;/*** 将读取到的数据分发到 Kafka 中*/
public class WriteTopology {
//    private static final String BOOTSTRAP_SERVERS = "192.168.43.219:9092"; //kafka 地址private static final String BOOTSTRAP_SERVERS = "192.168.43.219:19092"; //kafka 地址private static final String TOPIC_NAME = "foo";public static void main(String[] args) throws Exception {TopologyBuilder builder = new TopologyBuilder();// 定义 Kafka 生产者属性Properties props = new Properties();/** 指定 broker 的地址清单,清单里不需要包含所有的 broker 地址,生产者会从给定的 broker 里查找其他 broker 的信息。* 不过建议至少要提供两个 broker 的信息作为容错。*/props.put("bootstrap.servers", BOOTSTRAP_SERVERS);/** acks 参数指定了必须要有多少个分区副本收到消息,生产者才会认为消息写入是成功的。* acks=0 : 生产者在成功写入消息之前不会等待任何来自服务器的响应。* acks=1 : 只要集群的首领节点收到消息,生产者就会收到一个来自服务器成功响应。* acks=all : 只有当所有参与复制的节点全部收到消息时,生产者才会收到一个来自服务器的成功响应。*/props.put("acks", "all");props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");props.put("value.serializer","org.apache.kafka.common.serialization.StringSerializer");KafkaBolt bolt = new KafkaBolt<String, String>().withProducerProperties(props).withTopicSelector(new DefaultTopicSelector(TOPIC_NAME)).withTupleToKafkaMapper(newFieldNameBasedTupleToKafkaMapper<>());builder.setSpout("sourceSpout", new DataSourceSpout2(), 2).setNumTasks(3);builder.setBolt("kafkaBolt", bolt,2).shuffleGrouping("sourceSpout").setNumTasks(3);Config config = new Config();config.setNumWorkers(2);config.setDebug(true);config.put(Config.TOPOLOGY_MAX_SPOUT_PENDING, 1000);//允许 Spout 在处
//        理数据时保持更多的未处理数据,确保持续地从数据源中读取数据// 添加 Nimbus 配置config.put("nimbus.seeds", Arrays.asList("192.168.43.219")); // 根据实际情况调整if (args.length > 0 && args[0].equals("cluster")) {try {StormSubmitter.submitTopology("StormClusterWritingToKafkaClusterApp", config,builder.createTopology());} catch (AlreadyAliveException | InvalidTopologyException |AuthorizationException e) {e.printStackTrace();}} else {LocalCluster cluster = new LocalCluster();cluster.submitTopology("LocalWritingToKafkaApp",config, builder.createTopology());}}
}

阶段性验收

在编写好这两个文件之后就可以进行阶段性验收运行WriteTopology类,在kafka里面打开一个kafka,创建一个消费者,查看是否有收到消息,如果成功就可以继续下一步。

docker exec -it kafka2 /bin/bash
kafka-console-consumer.sh --bootstrap-server 172.23.0.11:9092,172.23.0.12:9092,172.23.0.13:9092 --topic foo

这里的话题要跟代码中的一致

在这里插入图片描述
如果有这样的输出就意味着连接成功了。

KafkaSpout类

这个类是从kafka中拿取数据,同上面的WriteTopology类要修改的内容是相同的

修改kafka地址

private static final String BOOTSTRAP_SERVERS = “192.168.43.219:19092”; //kafka 地址,这个地址跟flink实验里面填写的相同就可以。

修改话题名

private static final String TOPIC_NAME = “foo”;#这里要注意本实验需要一个唯一的话题名,在这里以及后面的文件和kafka中填写相同的话题名

添加nimbus地址

config.put(“nimbus.seeds”, Arrays.asList(“192.168.43.219”)); // 这里是我自己添加的,由于我的代码会报错找不到nimbus在这里添加之后写上自己的ip就可以找到了

报错

这个文件会出现两个类没有的报错以及<>的报错,两个类是需要自己定义的(后续会写),老师并没有给,<>的报错老师给的文件会有,如果用我下面的文件就不会有,已经解决了。

package org.example;import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.storm.Config;
import org.apache.storm.LocalCluster;
import org.apache.storm.StormSubmitter;
import org.apache.storm.generated.AlreadyAliveException;
import org.apache.storm.generated.AuthorizationException;
import org.apache.storm.generated.InvalidTopologyException;
import org.apache.storm.kafka.spout.*;
import org.apache.storm.kafka.spout.KafkaSpoutRetryExponentialBackoff.TimeInterval;
import org.apache.storm.topology.TopologyBuilder;import java.util.Arrays;
import java.util.logging.Logger;/**new-topic* 从 Kafka 中读取数据*/
public class KafkaSpout {private static final String BOOTSTRAP_SERVERS = "192.168.43.219:19092";// private static final String TOPIC_NAME = "kafkatopic0";private static final String TOPIC_NAME = "foo";private static final Logger logger =Logger.getLogger(ReadingFromKafkaApp.class.getName());static {//获取父级日志记录器Logger parentLogger = logger.getParent();//设置日志记录器的級别为 0FFparentLogger.setLevel(java.util.logging.Level.OFF);}public static void main(String[] args) throws Exception {final TopologyBuilder builder = new TopologyBuilder();builder.setSpout("kafka_spout", neworg.apache.storm.kafka.spout.KafkaSpout<>(getKafkaSpoutConfig(BOOTSTRAP_SERVERS, TOPIC_NAME)), 1);builder.setBolt("split_bolt", new SplitBolt(),2).shuffleGrouping("kafka_spout").setNumTasks(2);builder.setBolt("stat_store_bolt", new StatAndStoreBolt(),1).shuffleGrouping("split_bolt").setNumTasks(1);// 配置 Storm 工作线程数Config config = new Config();config.setNumWorkers(2); // 设置工作线程数为4// 如果外部传参 cluster 则代表线上环境启动,否则代表本地启动if (args.length > 0 && args[0].equals("cluster")) {config.put("nimbus.seeds", Arrays.asList("192.168.43.219")); // 根据实际部署修改try {StormSubmitter.submitTopology("ClusterReadingFromKafkaApp", config,builder.createTopology());} catch (AlreadyAliveException | InvalidTopologyException |AuthorizationException e) {e.printStackTrace();}} else {// 本地模式LocalCluster cluster = new LocalCluster();cluster.submitTopology("ClusterReadingFromKafkaApp", config,builder.createTopology());// 保持本地集群运行一段时间或直到手动停止Thread.sleep(60000); // 运行1分钟cluster.shutdown();}}private static KafkaSpoutConfig<String, String> getKafkaSpoutConfig(String bootstrapServers, String topic) {return KafkaSpoutConfig.builder(bootstrapServers, topic)// 除了分组 ID,以下配置都是可选的。分组 ID 必须指定,否则会抛InvalidGroupIdException.setProp(ConsumerConfig.GROUP_ID_CONFIG, "testGroup")// 定义重试策略.setRetry(getRetryService())// 定时提交偏移量的时间间隔,默认是 15s.setOffsetCommitPeriodMs(10_000).build();}// 定义重试策略private static KafkaSpoutRetryService getRetryService() {return new KafkaSpoutRetryExponentialBackoff(TimeInterval.microSeconds(500),TimeInterval.milliSeconds(2), Integer.MAX_VALUE,TimeInterval.seconds(10));}
}

SplitBolt类

这个类是将拿到的数据进行切分的,无需修改

package org.example;import org.apache.storm.task.OutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseRichBolt;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Tuple;
import org.apache.storm.tuple.Values;import java.util.ArrayList;
import java.util.List;
import java.util.Map;/*** 切分并统计从 Kafka 获取的数据*/
public class SplitBolt extends BaseRichBolt {private OutputCollector collector;private int count;private List<Tuple> tuples;public void prepare(Map stormConf, TopologyContext context, OutputCollector collector){this.collector = collector;this.count = 0;this.tuples = new ArrayList<>();}public void execute(Tuple tuple) {try {String[] words = processAndEmitData(tuple);// 使用逗号作为分隔符int volume = Integer.parseInt(words[4]);double amount = Double.parseDouble(words[3]);String time = words[0];String tradeType = words[5];String stockCode = words[1];String stockName = words[2];String tradePlace = words[6];String tradePlatform = words[7];String industryType = words[8];collector.emit(new Values(volume, amount, time, tradeType, stockCode,stockName, tradePlace, tradePlatform, industryType));// 必须 ack,否则会重复消费 kafka 中的消息collector.ack(tuple);} catch (Exception e) {e.printStackTrace();collector.fail(tuple);}}public String[] processAndEmitData(Tuple tuple){String[] words;String line = tuple.getStringByField("value");System.out.println("received from kafka : " + line);words = line.split(",");return words;}public void declareOutputFields(OutputFieldsDeclarer declarer) {declarer.declare(new Fields("volume", "amount", "time", "tradeType", "stockCode","stockName", "tradePlace", "tradePlatform", "industryType")); // 切分成字段,后续进行统计}
}

ReadingFromKafkaApp类

这个类说实话我感觉并没有起作用,但是为了不报错,我还是写上了(我看有些人没有这个文件都能直接跑),修不修改都是能跑的

package org.example;import org.apache.storm.Config;
import org.apache.storm.LocalCluster;
import org.apache.storm.kafka.spout.KafkaSpoutConfig;
import org.apache.storm.topology.TopologyBuilder;public class ReadingFromKafkaApp {private static final String BOOTSTRAP_SERVERS = "192.168.193.108:9092";private static final String TOPIC_NAME = "kafkatopic0";public static void main(String[] args) throws Exception {// Kafka 配置KafkaSpoutConfig<String, String> spoutConfig = KafkaSpoutConfig.builder(BOOTSTRAP_SERVERS, TOPIC_NAME).setGroupId("storm-consumer-group") // 指定消费者组.setMaxUncommittedOffsets(100) // Kafka 消费者的最大未提交偏移量数.build();// 创建拓扑TopologyBuilder builder = new TopologyBuilder();// 添加 Kafka Spoutbuilder.setSpout("kafka_spout", new org.apache.storm.kafka.spout.KafkaSpout<>(spoutConfig), 1);// 添加 SplitBolt 进行数据处理builder.setBolt("split_bolt", new SplitBolt(), 2).shuffleGrouping("kafka_spout");// Storm 配置Config config = new Config();config.setDebug(true);config.setNumWorkers(2);// 提交拓扑到本地集群LocalCluster cluster = new LocalCluster();cluster.submitTopology("ReadingFromKafkaApp", config, builder.createTopology());}
}

StatAndStoreBolt类

这个类是将切分后的数据进行统计,得到我们比较关心的数据,无需修改

package org.example;import org.apache.storm.task.OutputCollector;
import org.apache.storm.topology.IRichBolt;
import org.apache.storm.tuple.Tuple;
import org.apache.storm.tuple.Values;
import org.apache.storm.utils.Utils;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;import java.util.HashMap;
import java.util.Map;/*** 统计和存储数据的 Bolt 类*/
public class StatAndStoreBolt implements IRichBolt {private static final Logger LOG = LoggerFactory.getLogger(StatAndStoreBolt.class); // 使用 SLF4J 记录日志private OutputCollector collector;// 用来存储统计数据的变量private Map<String, Integer> stockCountMap;private Map<String, Double> totalAmountMap;@Overridepublic void prepare(Map stormConf, org.apache.storm.task.TopologyContext context, OutputCollector collector) {this.collector = collector;// 初始化统计数据存储结构this.stockCountMap = new HashMap<>();this.totalAmountMap = new HashMap<>();}@Overridepublic void execute(Tuple input) {long startTime = System.nanoTime(); // 记录开始时间// 从输入的 tuple 中获取字段数据String stockCode = input.getStringByField("stockCode");int volume = input.getIntegerByField("volume");double amount = input.getDoubleByField("amount");// 统计每个股票的交易数量stockCountMap.put(stockCode, stockCountMap.getOrDefault(stockCode, 0) + volume);// 计算每个股票的总交易金额totalAmountMap.put(stockCode, totalAmountMap.getOrDefault(stockCode, 0.0) + amount);// 每次处理完数据后进行 ack 操作,确认处理成功collector.ack(input);// 记录当前统计数据到日志long endTime = System.nanoTime(); // 记录结束时间long elapsedTime = endTime - startTime; // 计算耗时// 使用 SLF4J 记录日志,避免使用 System.out.printlnLOG.info("Processing Stock Code: {}", stockCode);LOG.info("Total Volume: {}", stockCountMap.get(stockCode));LOG.info("Total Amount: {}", totalAmountMap.get(stockCode));LOG.info("Processing Time for this Tuple: {} nanoseconds", elapsedTime);// 示例: 发射处理后的数据到下游(如果需要的话)collector.emit(new Values(stockCode, stockCountMap.get(stockCode), totalAmountMap.get(stockCode)));}@Overridepublic void cleanup() {// 进行任何必要的清理操作LOG.info("StatAndStoreBolt cleanup");}@Overridepublic void declareOutputFields(org.apache.storm.topology.OutputFieldsDeclarer declarer) {// 声明输出字段declarer.declare(new org.apache.storm.tuple.Fields("stockCode", "totalVolume", "totalAmount"));}@Overridepublic Map<String, Object> getComponentConfiguration() {return null;}
}

最终验收

先运行WriteTopology类,并且确定kafka接收到数据后,运行KafkaSpout类,这个类会处理数据得到统计数据,如图结果就算成功了。
在这里插入图片描述

http://www.dtcms.com/a/564759.html

相关文章:

  • 黔西南建设厅网站帮小公司代账一个月费用
  • RAG_查询重构与分发
  • AIOT:用HealthFi重构全球健康金融体系的蓝海样本
  • 感知机之争,杀死神经网络的“人工智能之父”
  • 企业seo服务深圳百度seo培训
  • 清华大学网站建设方案wordpress 获取用户邮箱
  • 解析EasyGBS视频分发与按需直播关键技术,实现海量视频的高效触达
  • 在.NET Core Web Api中使用redis
  • .NET Core Web API开发需引入的三个基本依赖配置说明
  • 怎么在PPT里面插入网页?
  • ETL核对
  • Hangfire 入门与实战:在 .NET Core 中实现可靠后台任务处理
  • python ppt转pdf以及图片提取
  • 大连做公司网站的公司用php做网站要用什么软件
  • 中国建设银行网站口公关工资一般多少钱一个月
  • 线性矩阵不等式 (LMI)
  • 基于无六环H校验矩阵和归一化偏移minsum算法的LDPC编译码matlab性能仿真
  • Linux DMA 技术深度解析:从原理到实战
  • PsTools 学习笔记(7.14):PsFile——谁占用了我的文件?一键查清并安全释放
  • 企业级数智化解决方案:行云创新 AI-CloudOS 产品矩阵引领转型价值落地
  • 华为发布Atlas 900 DeepGreen AI服务器:单机柜100PF算力重构AI训练基础设施
  • 线性代数 - 矩阵求逆
  • 什么网站做生鲜比较好企业网站建设注意什么
  • 前端技术栈 ——nvm与Node.js环境安装
  • 具身智能(一)关于VLA模型π0
  • 企业门户网站的意义做淘宝的人就跟做网站一样
  • 私人做网站图片企业网站的建设与维护是什么
  • Enterprise architect工具绘制活动图时如何使用Call Behavior Actions
  • 华为openEuler 22.03 (LTS-SP3) 手动安装单点clickhouse
  • 用docker搭建selenium grid分布式环境