当前位置: 首页 > news >正文

中小企业为什么要建设网站软文范例100字

中小企业为什么要建设网站,软文范例100字,媒体发稿网,深圳住房与建设局网站在 C 中实现图的存储时,常用的方法包括 邻接矩阵(Adjacency Matrix)、邻接表(Adjacency List) 和 边列表(Edge List)。以下是具体实现方法、优缺点分析及代码示例: 1. 邻接矩阵&…

在 C++ 中实现图的存储时,常用的方法包括 邻接矩阵(Adjacency Matrix)邻接表(Adjacency List)边列表(Edge List)。以下是具体实现方法、优缺点分析及代码示例:


1. 邻接矩阵(Adjacency Matrix)

原理
  • 使用二维数组 matrix[u][v] 表示顶点 uv 的连接关系。
  • 适用于 稠密图(边数接近顶点数的平方)。
  • 无权图matrix[u][v] = 1 表示存在边;0 表示无连接。
  • 带权图matrix[u][v] = weight 表示边的权重。
图解

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

C++ 实现
#include <vector>
using namespace std;// 定义图的顶点数
const int V = 100;// 无权图的邻接矩阵
vector<vector<int>> adjMatrix(V, vector<int>(V, 0));// 添加无向边
void addUndirectedEdge(int u, int v) {adjMatrix[u][v] = 1;adjMatrix[v][u] = 1;
}// 添加带权有向边
void addDirectedWeightedEdge(int u, int v, int weight) {adjMatrix[u][v] = weight;
}// 检查边是否存在
bool hasEdge(int u, int v) {return adjMatrix[u][v] != 0;
}
优点
  • 快速判断两顶点是否相邻:时间复杂度 O(1)。
  • 适合频繁查询边的存在性
缺点
  • 空间复杂度高:O(V²),不适合顶点数多(如 V > 1e4)的稀疏图。
  • 插入/删除边效率低:需要修改二维数组。

2. 邻接表(Adjacency List)

原理
  • 为每个顶点维护一个链表或动态数组,存储其邻接顶点。
  • 适用于 稀疏图(边数远小于顶点数的平方)。
  • 无权图adjList[u] 存储 v 的集合。
  • 带权图adjList[u] 存储 pair<v, weight>
C++ 实现
#include <vector>
#include <list>
using namespace std;// 无权图的邻接表(使用 vector)
vector<vector<int>> adjList;// 初始化顶点数为 n 的图
void initGraph(int n) {adjList.resize(n);
}// 添加无向边
void addUndirectedEdge(int u, int v) {adjList[u].push_back(v);adjList[v].push_back(u);
}// 带权图的邻接表(使用 vector<pair>)
vector<vector<pair<int, int>>> weightedAdjList;// 添加带权有向边
void addWeightedDirectedEdge(int u, int v, int weight) {weightedAdjList[u].emplace_back(v, weight); // C++11 的 emplace_back 更高效
}// 遍历顶点 u 的邻居
void traverseNeighbors(int u) {for (const auto& neighbor : adjList[u]) {// 处理邻居顶点 neighbor}
}
优点
  • 空间复杂度低:O(V + E),适合大规模稀疏图。
  • 高效遍历邻接顶点:时间复杂度与邻接顶点数成正比。
缺点
  • 查询边的存在性慢:需要遍历邻接表,时间复杂度 O(degree(u))。

3. 边列表(Edge List)

原理
  • 将图的边存储为 (u, v, weight) 的列表。
  • 适用于需要 按边遍历 的场景(如 Kruskal 算法求最小生成树)。
C++ 实现
#include <vector>
using namespace std;// 定义边的结构体
struct Edge {int u, v, weight;Edge(int u, int v, int w) : u(u), v(v), weight(w) {}
};vector<Edge> edgeList;// 添加带权边
void addEdge(int u, int v, int weight) {edgeList.emplace_back(u, v, weight);
}// 遍历所有边
void traverseEdges() {for (const Edge& e : edgeList) {// 处理边 e.u -> e.v,权重 e.weight}
}
优点
  • 存储简单:适用于算法需要全局遍历边(如 Kruskal 算法)。
  • 节省空间:仅存储存在的边,空间复杂度 O(E)。
缺点
  • 查询顶点邻接关系慢:需要遍历整个边列表。

4. 链式前向星(Linked Forward Star)

原理
  • 一种紧凑的邻接表实现,通过数组模拟链表,常用于算法竞赛。
  • 使用三个数组:head[]to[]next[]weight[]
C++ 实现
const int MAX_EDGES = 1e5; // 最大边数
int head[MAX_EDGES];       // head[u] 表示顶点 u 的第一条边的索引
int to[MAX_EDGES];         // 存储边的终点
int next[MAX_EDGES];       // 存储下一条边的索引
int weight[MAX_EDGES];     // 存储边的权重
int edgeCount = 0;         // 当前边数// 初始化
void init() {memset(head, -1, sizeof(head)); // 初始化为 -1
}// 添加有向边 u -> v,权重 w
void addEdge(int u, int v, int w) {to[edgeCount] = v;weight[edgeCount] = w;next[edgeCount] = head[u];head[u] = edgeCount++;
}// 遍历顶点 u 的邻接边
void traverseEdges(int u) {for (int i = head[u]; i != -1; i = next[i]) {int v = to[i];int w = weight[i];// 处理边 u -> v,权重 w}
}
优点
  • 内存紧凑:适合处理超大规模图(如顶点数 1e5 以上)。
  • 高效遍历:与邻接表性能接近。
缺点
  • 实现复杂:需要手动管理数组索引。

5. 存储方法对比及适用场景

存储方法时间复杂度(查询边)空间复杂度适用场景
邻接矩阵O(1)O(V²)稠密图、频繁查询边的存在性
邻接表O(degree(u))O(V + E)稀疏图、频繁遍历邻接顶点
边列表O(E)O(E)需要全局遍历边的算法
链式前向星O(degree(u))O(V + E)算法竞赛中的大规模图处理

6. 动态图的存储优化

  • 邻接表的动态扩展:使用 vectorpush_back 动态添加边。
  • 删除边的优化:使用链表(如 list)或标记法(惰性删除)。

总结

  • 邻接矩阵:适合稠密图,快速查询边的存在性。
  • 邻接表:适合稀疏图,高效遍历邻接顶点(推荐使用 vector<vector<pair<int, int>>>)。
  • 边列表:适合需要全局处理边的场景(如 Kruskal 算法)。
  • 链式前向星:适合算法竞赛中的高性能需求。

代码建议:大多数情况下优先使用 邻接表,结合 C++ 的 vectorpair 实现带权图的高效存储。


在这里插入图片描述

http://www.dtcms.com/a/550473.html

相关文章:

  • 网站快照历史wordpress强制使用
  • LinuxShell grep 查询与正则匹配
  • opencv 学习: 02 初识图片处理
  • 核动力船舶中,固有安全应该与本质安全是一个概念吗?
  • 山西建设机械网站首页wordpress数据库名和主机怎么填
  • 遵义网站网站建设海淀做企业网站的公司
  • NFT 版权保护技术:基于区块链的数字艺术品确权与二次交易追溯方案
  • Nav2自主导航
  • 网站建设推广接单语上海工程有限公司
  • 东莞seo建站优化公司沈阳网站制作机构
  • 医院网站制作好吗网页搜索关键字
  • vue2或vue3中使用xx.d.ts文件(没有提供内置的 TypeScript 类型声明)
  • [Linux] 内核链表实现详解
  • 网上有做logo的网站吗近期时政热点新闻20条
  • 【双指针】破解数组的协奏曲一(移动零)
  • 没有统一文档模板会带来哪些问题
  • 沧州企业网站建设方案宿迁哪家做网站好
  • 零基础从头教学Linux(Day 59)
  • Slicer中MRML目录下各个子目录功能概述
  • 重庆市渝兴建设投资有限公司网站什么网站做禽苗好的网站
  • 商品网站建设实验报告中山市饮食网站建设
  • Spring Boot3零基础教程,Spring Boot 3 新特性,笔记94
  • 万物皆表达式:Rust 安全性与表达力的基石
  • 报价网站建设建立自己的网站软件有
  • 拿了网赌代理后怎样做自己的网站网站与网页的关系
  • 江西那家做网站公司好九江网站建设服务
  • 建设工程网站新专家入库京东网站的建设与发展现状分析
  • tensorflow生成随机数和张量
  • 凡科做的手机网站可以导出来wordpress禁用插件
  • 郑州整站关键词搜索排名技术单位如何做网站宣传