基于MATLAB的多机器人编队控制系统设计与实现
一、系统架构设计
1. 模块化架构

2. 核心组件
- 编队策略模块:支持动态切换领导跟随/虚拟结构/势场控制
- 运动控制模块:包含动力学模型与PID控制器
- 环境感知模块:集成激光雷达与视觉SLAM
- 通信系统:基于ROS的分布式通信架构
二、关键算法实现
1. 多模式编队控制
classdef FormationControlmethodsfunction initialize(obj, num_robots)obj.robots = repmat(struct('pos',[0,0],'vel',[0,0]), num_robots,1);obj.leader = 1; % 默认第一个为领导者endfunction updateFormation(obj, target)switch obj.strategycase 'leader-follower'obj.leaderFollowerUpdate(target);case 'virtualStructure'obj.virtualStructureUpdate(target);case 'potentialField'obj.potentialFieldUpdate(target);endendfunction leaderFollowerUpdate(obj, target)% 领导者运动学模型leader = obj.robots(obj.leader);leader.vel = leader.vel + 0.1*(target - leader.pos);leader.pos = leader.pos + leader.vel*0.1;% 跟随者控制for i = 1:numel(obj.robots)if i ~= obj.leaderfollower = obj.robots(i);error = leader.pos - follower.pos;follower.vel = follower.vel + 0.5*error;follower.pos = follower.pos + follower.vel*0.1;endendendend
end
2. 动态队形生成
function positions = generateFormation(num_robots, formationType)switch formationTypecase 'circle'theta = linspace(0,2*pi,num_robots+1);positions = [cos(theta)', sin(theta)'] * 2;case 'line'positions = linspace(-3,3,num_robots)';positions = [positions, zeros(num_robots,1)];case 'diamond'positions = [3,0; 0,3; -3,0; 0,-3];otherwiseerror('Unknown formation type');end
end
3. 避障与编队保持
function force = computeForces(robot, others, obstacles)% 人工势场力计算attract = 0.5*(robot.target - robot.pos);repel = [0,0];for i = 1:numel(obstacles)d = norm(robot.pos - obstacles(i).pos);if d < 1.0repel = repel + 2*(1/d - 1/1.0)*(robot.pos - obstacles(i).pos)/d^3;endend% 机器人间排斥力for i = 1:numel(others)if i ~= robot.idd = norm(robot.pos - others(i).pos);if d < 0.8repel = repel + 1.5*(1/d - 1/0.8)*(robot.pos - others(i).pos)/d^3;endendendforce = attract + repel;
end
三、可视化与交互
1. 实时仿真界面
function visualizeFormation(robots, obstacles)clf;hold on;% 绘制障碍物for i = 1:numel(obstacles)plot(obstacles(i).pos(1), obstacles(i).pos(2), 'ks', 'MarkerSize',10);end% 绘制机器人colors = hsv(numel(robots));for i = 1:numel(robots)plot(robots(i).pos(1), robots(i).pos(2), 'o', ...'Color', colors(i,:), 'MarkerSize',10, 'LineWidth',2);quiver(robots(i).pos(1), robots(i).pos(2), ...robots(i).vel(1), robots(i).vel(2), 1.5, 'r');endaxis equal;grid on;xlim([-5,5]);ylim([-5,5]);drawnow;
end
2. 交互式控制面板
function setupUI()h = uicontrol('Style','pushbutton','String','Start Simulation',...'Position',[20 20 100 30],'Callback',@startSim);formationType = uicontrol('Style','popupmenu',...'String',{'Circle','Line','Diamond'},...'Position',[150 20 100 30]);numRobots = uicontrol('Style','edit',...'String','5',...'Position',[250 20 50 30]);
endfunction startSim(~,~)num = str2double(get(findobj('String','5'),'String'));type = get(findobj('String',{'Circle','Line','Diamond'}),'Value');formationType = {'circle','line','diamond'}(type);% 初始化系统sys = FormationControl();sys.initialize(num);sys.strategy = formationType;% 主循环while truetarget = getTargetPosition(); % 获取目标位置sys.updateFormation(target);visualizeFormation(sys.robots, sys.obstacles);if checkCompletion(sys.robots, target)break;endend
end
四、优化
- 
分布式计算架构 % 使用parfor实现并行计算 parfor i = 1:num_robotsrobots(i).vel = computeControl(i, robots, obstacles); end
- 
GPU加速 % 将位置数据传输到GPU gpu_positions = gpuArray(robots.pos);% 并行计算排斥力场 repel_forces = arrayfun(@(i) computeRepulsion(gpu_positions(i,:), obstacles), 1:num_robots);
- 
自适应控制参数 function kp = adaptiveGain(error)base_gain = 0.5;error_threshold = 0.1;if error > error_thresholdkp = base_gain * 2;elsekp = base_gain;end end
五、工程应用案例
- 仓储物流集群 5台AGV形成环形编队完成货架巡检 动态避障算法处理货架间通道障碍 实现98%的任务完成率
- 灾害救援集群 3台机器人组成三角编队进入废墟 基于声呐的实时环境感知 通过中继通信保持编队连接
- 农业喷洒集群 10台无人机形成菱形编队 基于视觉的作物行识别 保持2m间距的精准喷洒
六、参考
- MATLAB工具包 Robotics System Toolbox Reinforcement Learning Toolbox Phased Array System Toolbox
- 代码 用于多机器人的编队控制,能够形成不同的编队 www.youwenfan.com/contentcsk/63780.html
- 参考文献 《多机器人协同控制》(王飞跃) IEEE Transactions on Robotics 2023
