作者,Evil Genius
关于linux系统的命令内容,这是每个生信必备的,而且不光是会,而且要掌握每个命令在单细胞空间分析中的主要作用,我这里列举出来单细胞分析必须要掌握的命令,当然每个命令都有一些参数,命令包括,ls、mv、cp、rm、pwd、cd、mkdir、echo、cat、less、head、tail、which、find、gzip、tar、alias、wc、ln、wget ,以及重要的grep、sort、uniq、awk、sed、paste等。
如何用linux管理我们单细胞空间分析的环境,也是必修课。
每个命令在单细胞空间都有其特殊的作用,以ln为例,其主要的作用1、改名;2、指向数据等等,希望引起大家的重视。
这里简单考大家一下,如何用linux命令查看有多少个细胞类型,多少种细胞类型、以及输出目标细胞类型的Barcode?
基础真的很重要,参考2025番外--linux、R、python培训
https://mp.weixin.qq.com/s/8E1vYJMNhe5m0DXieBHfzA也是为了把第一层地基打好,以后遇到什么代码问题就会从从容容,游刃有余,不至于匆匆忙忙,手忙脚乱了。
今天我们探索分析,Spatial HD,大家分析HD应该都遇到了因为基因数很少导致结果很差,如何解决呢?我们来探索一下。
library(fastCNV)
library(fastCNVdata)
library(Seurat)HDBreast = readRDS('breast.HD.rds')annotation_file <- read.csv("VisiumHD.csv")HDBreast[["annots_8um"]] <- annotation_file$AnnotationsHDBreast <- annotations8umTo16um(HDBreast, referenceVar = "annots_8um") SpatialDimPlot(HDBreast, group.by = "projected_annots_8um")

HDBreast <- fastCNV_10XHD(HDBreast, sampleName = "HDBreast", referenceVar = "projected_annots_8um", referenceLabel = "NoTumor", printPlot = TRUE)

library(patchwork)
SpatialFeaturePlot(HDBreast, "cnv_fraction") | SpatialPlot(HDBreast, group.by = "projected_annots_8um")

library(scales)SpatialFeaturePlot(HDBreast, features = "11.q_CNV") +scale_fill_distiller(palette = "RdBu", direction = -1, limits = c(-0.5, 0.5), rescaler = function(x, to = c(0, 1), from = NULL) {rescale_mid(x, to = to, mid = 0)}) |
SpatialFeaturePlot(HDBreast, features = "8.q_CNV") +scale_fill_distiller(palette = "RdBu", direction = -1, limits = c(-0.5, 0.5), rescaler = function(x, to = c(0, 1), from = NULL) {rescale_mid(x, to = to, mid = 0)})

HDBreast <- CNVCluster(HDBreast, referenceVar = "projected_annots_8um", tumorLabel = "Tumor")SpatialDimPlot(HDBreast, group.by = "cnv_clusters")

plotCNVResultsHD(HDBreast, referenceVar = "projected_annots_8um", printPlot = TRUE)


CNV tree
tree_data <- CNVTree(HDBreast, values ="calls", cnv_thresh = 0.09, healthyClusters = "0")

生活很好,有你更好