当前位置: 首页 > news >正文

Python爬虫实战:一键采集电商数据,掌握市场动态!

电商数据分析是个香饽饽,可市面上的数据采集工具要不贵得吓人,要不就是各种广告弹窗。干脆自己动手写个爬虫,想抓啥抓啥,还能学点技术。今天咱聊聊怎么用Python写个简单的电商数据爬虫。

打好基础:搞定请求头

别看爬虫很牛,但基础工作得做足。浏览器访问网页时会带上各种 请求头信息 ,咱们写爬虫也得模仿这个行为,不然分分钟被网站拦截。

 

headers = {

'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36',

'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',

'Accept-Language': 'zh-CN,zh;q=0.8,zh-TW;q=0.7,zh-HK;q=0.5',

}

温馨提示:每个网站的反爬策略不一样,有时候可能需要加上Cookie、Referer等信息。要是遇到了再加就成。

发起请求:requests库来帮忙

发请求用 requests库 准没错,简单好用还稳定。pip安装一下就能用:

 

import requests

def get_page(url):

try:

response = requests.get(url, headers=headers, timeout=5)

return response.text

except Exception as e:

print(f'哎呀,出错了:{e}')

return None

解析数据:BeautifulSoup大显神通

拿到网页内容后,就该解析数据了。 BeautifulSoup 是个好帮手,把乱糟糟的HTML转成结构化的数据:

 

from bs4 import BeautifulSoup

def parse_product(html):

if not html:

return []

soup = BeautifulSoup(html, 'html.parser')

products = []

items = soup.find_all('div', class_='item') # 具体class名要看网站结构

for item in items:

product = {

'title': item.find('div', class_='title').text.strip(),

'price': item.find('span', class_='price').text.strip(),

'sales': item.find('span', class_='sales').text.strip()

}

products.append(product)

return products

存储数据:pandas帮你整理

数据爬下来了,得好好存起来。用 pandas 转成Excel,分析起来贼方便:

 

import pandas as pd

def save_data(products):

df = pd.DataFrame(products)

df.to_excel('products.xlsx', index=False)

print(f'搞定!共保存了{len(products)}条数据')

完整代码:整合一下

把上面的代码整合一下,就能一键采集数据了:

 

def main():

base_url = 'https://example.com/products?page={}' # 替换成实际的网站

all_products = []

for page in range(1, 6): # 采集5页数据

url = base_url.format(page)

print(f'正在爬取第{page}页...')

html = get_page(url)

products = parse_product(html)

all_products.extend(products)

time.sleep(1) # 别爬太快,对别人服务器好点

save_data(all_products)

if __name__ == '__main__':

main()

温馨提示:记得改成你要爬的网站地址,不同网站的HTML结构不一样,解析规则也得相应调整。

反爬处理:多动点小脑筋

网站肯定不愿意让你随便爬数据,咱得讲究点技巧:

  • IP代理池:换着IP访问,降低被封风险

  • 随机延时:别一直用固定间隔,显得太机械

  • 随机UA:多准备几个User-Agent轮着用

  • 验证码处理:遇到验证码可以用OCR识别

这个爬虫还挺实用,不光能爬电商数据,改改解析规则,啥数据都能爬。写爬虫最重要的是要有耐心,遇到问题别着急,慢慢调试就成。代码写好了,运行起来那叫一个爽,分分钟几千条数据到手。

相关文章:

  • 自然语言处理(NLP)中文文本预处理主流方法
  • python中采用opencv作常规的图片处理的方法~~~
  • 华为OD机试-发现新词的数量(Java 2024 E卷 100分)
  • Kafka 消息不丢失:全方位保障策略
  • redis菜鸟教程
  • 【MATLAB源码-第271期】基于matlab的雷达发射回波模拟,包括匹配滤波,加窗旁瓣控制,以及MTD处理。
  • C++ STL string容器全解析
  • 解锁健康密码,踏上养生之旅
  • 《基于WebGPU的下一代科学可视化——告别WebGL性能桎梏》
  • 【Linux篇】版本控制器-Git
  • OpenHarmony研发工具链子系统
  • Dify框架下的基于RAG流程的政务检索平台
  • 计算机毕业设计Python+DeepSeek-R1大模型微博的话题博文及用户画像分析系统 微博舆情可视化(源码+ 文档+PPT+讲解)
  • JPA编程,去重查询ES索引中的字段,对已有数据的去重过滤,而非全部字典数据
  • ETL系列-数据加载(Load)
  • MCU-缓存Cache与CPU中的主存SRAM
  • WPF框架---MvvmLight介绍
  • 大模型——模型上下文协议 (MCP)
  • 懒加载预加载
  • pyqt实现yolov8主界面和登录界面以及数据库
  • 中国做的网站国外能打开吗/做网页多少钱一个页面
  • 龙游网站制作/抖音seo怎么做的
  • Dw怎么做网站往里面加标题和字/天津网站排名提升多少钱
  • 烟台免费网站建设/搜索引擎优化排名培训
  • 六盘水市网站建设/网站开发用什么语言
  • 网站建设 地址: 上海石门二路/外贸自建站的推广方式