当前位置: 首页 > news >正文

数据结构八大排序:堆排序-从二叉树到堆排序实现

一、树与二叉树基础概念

1.1 树的基本结构

树是一种非线性的数据结构,由n(n≥0)个节点组成的有穷集合。当n=0时称为空树,非空树具有以下特性:

        有且仅有一个根节点

        其余节点可分为m(m≥0)个互不相交的有限集合

1.2 二叉树定义与特性

二叉树是每个节点最多有两个子树的树结构,通常称为左子树和右子树。

重要概念:

        孩子节点:一个节点的直接下级节点

        父节点:拥有孩子节点的上级节点

        叶子节点:没有孩子节点的节点(终端节点)

        分支节点:至少有一个孩子节点的节点

1.3 完全二叉树与满二叉树

        满二叉树:所有层都达到最大节点数的二叉树

        完全二叉树:除最后一层外,其他层都是满的,且最后一层节点尽量靠左排列

二、堆的基本概念与特性

2.1 堆的定义

堆是一种特殊的完全二叉树,满足以下性质:

        大顶堆:每个节点的值都大于或等于其孩子节点的值

        小顶堆:每个节点的值都小于或等于其孩子节点的值

2.2 堆的数组表示

由于堆是完全二叉树,可以用数组高效存储:

        节点i的左孩子:2*i + 1

        节点i的右孩子:2*i + 2

        节点i的父节点:(i-1)/2

三、堆排序算法原理

3.1 算法核心思想

堆排序利用堆的特性进行排序,主要步骤:

  1. 构建初始堆(大顶堆或小顶堆)

  2. 将堆顶元素与末尾元素交换

  3. 调整剩余元素为新堆

  4. 重复步骤2-3直到排序完成

3.2 排序过程图解

以数组 [4, 10, 3, 5, 1] 构建大顶堆为例:

初始数组: [4, 10, 3, 5, 1]
树形表示:4/ \10  3/ \5   1构建大顶堆过程:
1. 调整节点1(10): 已满足4/ \10  3/ \5   12. 调整节点0(4): 与10交换10/  \4    3/ \5   13. 调整节点1(4): 与5交换10/  \5    3/ \4   1最终大顶堆: [10, 5, 3, 4, 1]

四、堆排序详细过程

4.1 建堆过程

从最后一个非叶子节点开始,自底向上调整堆。

4.2 排序过程

  1. 交换堆顶与末尾元素

  2. 堆大小减1

  3. 调整堆结构

  4. 重复直到堆大小为1

五、堆排序C语言实现

5.1 基础堆排序实现

#include <stdio.h>
void adjustHeap(int arr[], int i, int n) {int temp = arr[i];for (int k = 2 * i + 1; k < n; k = 2 * k + 1) {if (k + 1 < n && arr[k] < arr[k + 1]) k++;if (arr[k] > temp) {arr[i] = arr[k];i = k;} else break;}arr[i] = temp;
}
void heapSort(int arr[], int n) {for (int i = n / 2 - 1; i >= 0; i--) adjustHeap(arr, i, n);for (int j = n - 1; j > 0; j--) {int temp = arr[0];arr[0] = arr[j];arr[j] = temp;adjustHeap(arr, 0, j);}
}
void printArray(int arr[], int n) {for (int i = 0; i < n; i++) printf("%d ", arr[i]);printf("\n");
}
int main() {int arr[] = {4, 10, 3, 5, 1};int n = sizeof(arr) / sizeof(arr[0]);printf("原数组: ");printArray(arr, n);heapSort(arr, n);printf("排序后: ");printArray(arr, n);return 0;
}

5.2 优化版本实现

#include <stdio.h>
void swap(int *a, int *b) {int temp = *a;*a = *b;*b = temp;
}
void heapify(int arr[], int n, int i) {int largest = i;int left = 2 * i + 1;int right = 2 * i + 2;if (left < n && arr[left] > arr[largest]) largest = left;if (right < n && arr[right] > arr[largest]) largest = right;if (largest != i) {swap(&arr[i], &arr[largest]);heapify(arr, n, largest);}
}
void optimizedHeapSort(int arr[], int n) {for (int i = n / 2 - 1; i >= 0; i--) heapify(arr, n, i);for (int i = n - 1; i >= 0; i--) {swap(&arr[0], &arr[i]);heapify(arr, i, 0);}
}
int main() {int arr[] = {9, 4, 2, 7, 1, 8, 3};int n = sizeof(arr) / sizeof(arr[0]);printf("原数组: ");for (int i = 0; i < n; i++) printf("%d ", arr[i]);printf("\n");optimizedHeapSort(arr, n);printf("排序后: ");for (int i = 0; i < n; i++) printf("%d ", arr[i]);printf("\n");return 0;
}

六、复杂度分析与性能比较

6.1 时间复杂度分析

        建堆过程:O(n)

        调整堆:每次调整O(logn),共n-1次

        总时间复杂度:O(nlogn)

6.2 空间复杂度分析

        空间复杂度:O(1) - 原地排序

6.3 稳定性分析

堆排序是不稳定的排序算法,因为交换堆顶和末尾元素时可能改变相同元素的相对顺序。

七、堆排序与其他排序算法比较

特性堆排序快速排序归并排序
时间复杂度O(nlogn)O(nlogn)O(nlogn)
空间复杂度O(1)O(logn)O(n)
稳定性不稳定不稳定稳定
适用场景内存受限通用场景需要稳定

八、使用注意事项与最佳实践

8.1 适用场景

  1. 内存敏感环境:空间复杂度O(1)

  2. 需要保证最坏情况性能:始终O(nlogn)

  3. 实时系统:可预测的性能表现

  4. 大数据处理:适合外部排序

8.2 注意事项

  1. 不稳定排序:相同元素可能改变顺序

  2. 常数因子较大:实际运行可能比其他O(nlogn)算法慢

  3. 缓存不友好:数组访问模式跳跃

  4. 实现复杂度:相比简单排序较复杂

8.3 最佳实践建议

// 推荐的堆排序模板
void recommendedHeapSort(int arr[], int n) {if (n <= 1) return;for (int i = n / 2 - 1; i >= 0; i--) {int parent = i;int temp = arr[parent];int child;while ((child = 2 * parent + 1) < n) {if (child + 1 < n && arr[child] < arr[child + 1]) child++;if (temp >= arr[child]) break;arr[parent] = arr[child];parent = child;}arr[parent] = temp;}for (int i = n - 1; i > 0; i--) {int temp = arr[0];arr[0] = arr[i];arr[i] = temp;int parent = 0;int tempVal = arr[parent];int child;while ((child = 2 * parent + 1) < i) {if (child + 1 < i && arr[child] < arr[child + 1]) child++;if (tempVal >= arr[child]) break;arr[parent] = arr[child];parent = child;}arr[parent] = tempVal;}
}

九、堆的实际应用

9.1 优先级队列实现

#include <stdio.h>
#define MAX_SIZE 100
typedef struct {int data[MAX_SIZE];int size;
} PriorityQueue;
void initQueue(PriorityQueue *q) { q->size = 0; }
void enqueue(PriorityQueue *q, int value) {if (q->size >= MAX_SIZE) return;int i = q->size++;q->data[i] = value;while (i > 0 && q->data[i] > q->data[(i-1)/2]) {int temp = q->data[i];q->data[i] = q->data[(i-1)/2];q->data[(i-1)/2] = temp;i = (i-1)/2;}
}
int dequeue(PriorityQueue *q) {if (q->size <= 0) return -1;int result = q->data[0];q->data[0] = q->data[--q->size];int i = 0;while (2*i+1 < q->size) {int child = 2*i+1;if (child+1 < q->size && q->data[child] < q->data[child+1]) child++;if (q->data[i] >= q->data[child]) break;int temp = q->data[i];q->data[i] = q->data[child];q->data[child] = temp;i = child;}return result;
}

9.2 Top K问题求解

void findTopK(int arr[], int n, int k) {for (int i = k/2-1; i >= 0; i--) {int parent = i;int temp = arr[parent];int child;while ((child = 2*parent+1) < k) {if (child+1 < k && arr[child] > arr[child+1]) child++;if (temp <= arr[child]) break;arr[parent] = arr[child];parent = child;}arr[parent] = temp;}for (int i = k; i < n; i++) {if (arr[i] > arr[0]) {arr[0] = arr[i];int parent = 0;int temp = arr[parent];int child;while ((child = 2*parent+1) < k) {if (child+1 < k && arr[child] > arr[child+1]) child++;if (temp <= arr[child]) break;arr[parent] = arr[child];parent = child;}arr[parent] = temp;}}printf("前%d大的元素: ", k);for (int i = 0; i < k; i++) printf("%d ", arr[i]);printf("\n");
}

十、常见面试题精讲

10.1 基础概念题

  1. 堆排序的时间复杂度是多少?为什么?

    答:O(nlogn),建堆O(n),每次调整O(logn)共n-1次
  2. 堆排序为什么是不稳定的?

    答:交换堆顶和末尾元素时可能改变相同元素的相对顺序
  3. 大顶堆和小顶堆的区别是什么?

    答:大顶堆父节点大于等于子节点,小顶堆父节点小于等于子节点

10.2 编码实现题

// 题目1:使用堆排序找出数组中第k大的元素
int findKthLargest(int arr[], int n, int k) {for (int i = n/2-1; i >= 0; i--) {int parent = i;int temp = arr[parent];int child;while ((child = 2*parent+1) < n) {if (child+1 < n && arr[child] < arr[child+1]) child++;if (temp >= arr[child]) break;arr[parent] = arr[child];parent = child;}arr[parent] = temp;}for (int i = n-1; i >= n-k; i--) {int temp = arr[0];arr[0] = arr[i];arr[i] = temp;int parent = 0;int tempVal = arr[parent];int child;while ((child = 2*parent+1) < i) {if (child+1 < i && arr[child] < arr[child+1]) child++;if (tempVal >= arr[child]) break;arr[parent] = arr[child];parent = child;}arr[parent] = tempVal;}return arr[n-k];
}

10.3 算法分析题

  1. 给定10^8个整数,堆排序和快速排序哪个更合适?

    答:堆排序,因为保证O(nlogn)且空间O(1),快速排序最坏O(n²)
  2. 如何证明堆排序是不稳定的?

    答:构造包含相同元素的序列,观察排序后相对位置
  3. 堆排序在什么实际系统中应用广泛?

    答:嵌入式系统、实时系统、内存受限环境

10.4 进阶思考题

// 题目:实现多路归并排序中的败者树(基于堆)
void buildLoserTree(int leaves[], int tree[], int k) {for (int i = 0; i < k; i++) tree[i] = -1;for (int i = k-1; i >= 0; i--) adjustTree(leaves, tree, k, i);
}
void adjustTree(int leaves[], int tree[], int k, int s) {int t = (s + k) / 2;while (t > 0) {if (s == -1) break;if (tree[t] == -1 || leaves[s] > leaves[tree[t]]) {int temp = s;s = tree[t];tree[t] = temp;}t /= 2;}tree[0] = s;
}

十一、性能测试与比较

#include <stdio.h>
#include <time.h>
#include <stdlib.h>
void performanceTest() {const int SIZE = 100000;int *arr = (int*)malloc(SIZE * sizeof(int));for (int i = 0; i < SIZE; i++) arr[i] = rand() % 1000;clock_t start = clock();optimizedHeapSort(arr, SIZE);clock_t end = clock();printf("堆排序%d个元素时间: %f秒\n", SIZE, (double)(end - start) / CLOCKS_PER_SEC);free(arr);
}

十二、堆排序的变体与扩展

12.1 二项堆与斐波那契堆

// 二项堆节点结构
typedef struct BinomialNode {int key;int degree;struct BinomialNode *child;struct BinomialNode *sibling;struct BinomialNode *parent;
} BinomialNode;

12.2 堆的扩展应用

        定时器管理                                                        网络数据包调度

        图算法中的优先级队列                                      操作系统进程调度

总结

堆排序作为一种高效的比较排序算法,以其O(nlogn)的时间复杂度和O(1)的空间复杂度在特定场景下具有重要价值。理解堆的数据结构特性、掌握建堆和调整堆的过程,对于解决Top K问题、实现优先级队列等实际应用具有重要意义。虽然堆排序的常数因子较大且不稳定,但在内存受限或需要保证最坏情况性能的场景下仍然是优秀的选择。

http://www.dtcms.com/a/512976.html

相关文章:

  • 四川建设厅的网站线上推广招聘
  • 网站设计贵不贵常州网站建设方案策划
  • STM32 USART框图简介
  • UVa 11020 Efficient Solutions
  • [go 面试] 接口测试的方法与技巧
  • 公司做网站价格新媒体运营师证书
  • Python爬虫第8课:代理池与反反爬虫技术
  • 做网站有视频教吗营销推广型网站价格
  • 济南网站建设优化公司域名备案网站购买
  • 关于 DeepSeek-OCR 的猜想
  • Rademacher复杂度:衡量机器学习模型复杂度的利器
  • 西矿文旅:以自然之道开启研学新篇,为文旅产业注入“芯”动力
  • 攻防世界—easyupload
  • 合肥网站公司企业营销策划方案
  • 地方网站发展方向抖音代运营 深圳
  • 怎么做网站推广和宣传济南网站建设首选传承网络
  • 项目开发手册-项目结构
  • 数据库原理实验报告:数据库查询操作实现
  • 学习网站开发流程wordpress采集附件
  • 网站开发招标参数三亚市建设局网站公示
  • 网站后台iis配置立陶宛与俄罗斯最新消息
  • 【AI】AI评测入门(五):Evaluation 跑起来
  • GSFE层错能计算(DFT)
  • 数据结构——二十八、图的基本操作(王道408)
  • 百度分公司 网站外包中文在线っと好きだった最新版
  • 【Python OOP Diary 1.1】题目二:简单计算器,改错与优化
  • 如何用记事本做网站php网站开发工程师
  • 企业网站群建设的原因网站优化检查
  • 【JVM】详解 Class类文件的结构
  • 珠海市住房和建设局网站微网站开发 php