当前位置: 首页 > news >正文

网站怎么做白色字阿里巴巴网站官网

网站怎么做白色字,阿里巴巴网站官网,网站功能方案,wordpress设置投稿者上传功图片2.3.1 标量 标量由只有一个元素的张量表示。 下面的代码将实例化两个标量,并执行一些熟悉的算术运算,即加法、减、乘法、除法和指数。 2.3.2 向量 人们通过一维张量表示向量。一般来说,张量可以具有任意长度,取决于机器的内存限…

2.3.1 标量

标量由只有一个元素的张量表示。 下面的代码将实例化两个标量,并执行一些熟悉的算术运算,即加法、减、乘法、除法和指数。

在这里插入图片描述

2.3.2 向量

人们通过一维张量表示向量。一般来说,张量可以具有任意长度,取决于机器的内存限制。
在这里插入图片描述

我们可以使用下标来引用向量的任一元素,例如可以通过 x i x_i xi来引用第 i i i个元素。

注意,元素 x i x_i xi是一个标量,所以我们在引用它时不会加粗。
大量文献认为列向量是向量的默认方向。

在数学中,向量 x \mathbf{x} x可以写为:

x = [ x 1 x 2 ⋮ x n ] , \mathbf{x} =\begin{bmatrix}x_{1} \\x_{2} \\ \vdots \\x_{n}\end{bmatrix}, x= x1x2xn ,

  • 其中 x 1 , … , x n x_1,\ldots,x_n x1,,xn是向量的元素。在代码中,我们(通过张量的索引来访问任一元素)。
  • 注意:下标从0计数。
    在这里插入图片描述

2.3.2.1 长度、维度和形状

在这里插入图片描述

2.3.3 矩阵

调用函数来实例化张量时,我们可以[通过指定两个分量 m m m n n n来创建一个形状为 m × n m \times n m×n的矩阵]。
在这里插入图片描述

矩阵的转置
在这里插入图片描述

对称矩阵
在这里插入图片描述

2.3.4 张量

当我们开始处理图像时,张量将变得更加重要,图像以 n n n维数组形式出现。

个人认为:
标量代表一个元素
向量代表一维数组
矩阵代表二维数组
张量则代表多维(>2),但是张量也可以代表标量/向量/矩阵
在这里插入图片描述

2.3.5 张量算法的基本性质

矩阵加法: 将两个相同形状的矩阵相加,会在这两个矩阵上执行元素加法。
在这里插入图片描述

Hadamard积: 两个矩阵的按元素乘法(Hadamard product)(数学符号 ⊙ \odot )。
A ⊙ B = [ a 11 b 11 a 12 b 12 … a 1 n b 1 n a 21 b 21 a 22 b 22 … a 2 n b 2 n ⋮ ⋮ ⋱ ⋮ a m 1 b m 1 a m 2 b m 2 … a m n b m n ] . \mathbf{A} \odot \mathbf{B} = \begin{bmatrix} a_{11} b_{11} & a_{12} b_{12} & \dots & a_{1n} b_{1n} \\ a_{21} b_{21} & a_{22} b_{22} & \dots & a_{2n} b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} b_{m1} & a_{m2} b_{m2} & \dots & a_{mn} b_{mn} \end{bmatrix}. AB= a11b11a21b21am1bm1a12b12a22b22am2bm2a1nb1na2nb2namnbmn .
在这里插入图片描述

将张量乘以或加上一个标量不会改变张量的形状,其中张量的每个元素都将与标量相加或相乘。
在这里插入图片描述

2.3.6 降维

元素和, 可以表示任意形状张量的元素和
在这里插入图片描述

指定张量沿哪一个轴来通过求和降低维度

  • 对于二维而言,轴0为行,轴1为列。axis=0代表行消失,多行变为一行。 在这里插入图片描述

平均值
在这里插入图片描述

2.3.6.1 非降维求和

有时在调用函数来计算总和或均值时保持轴数不变会很有用。
在这里插入图片描述

由于sum_A在对每行进行求和后仍保持两个轴,我们可以(通过广播将A除以sum_A)。
在这里插入图片描述

铅某个轴计算A元素的累积总和
在这里插入图片描述

2.3.7 点积

一维向量的点积在这里插入图片描述

可以通过执行按元素乘法,然后进行求和来表示两个向量的点积
在这里插入图片描述

2.3.8 矩阵-向量积

在这里插入图片描述

2.3.9 矩阵-矩阵乘法

在这里插入图片描述

2.3.10 范数

L 2 L_2 L2范数: 向量元素平方和的平方根

∥ x ∥ 2 = ∑ i = 1 n x i 2 , \|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2}, x2=i=1nxi2 ,
在这里插入图片描述

L 1 L_1 L1 范数: 向量元素的绝对值之和
深度学习中更经常地使用 L 2 L_2 L2范数的平方,也会经常遇到 L 1 L_1 L1范数。

  • L 2 L_2 L2范数相比, L 1 L_1 L1范数受异常值的影响较小。
    为了计算 L 1 L_1 L1范数,我们将绝对值函数和按元素求和组合起来。

∥ x ∥ 1 = ∑ i = 1 n ∣ x i ∣ . \|\mathbf{x}\|_1 = \sum_{i=1}^n \left|x_i \right|. x1=i=1nxi.

在这里插入图片描述

Frobenius范数: 矩阵元素平方和的平方根
在这里插入图片描述

http://www.dtcms.com/a/473974.html

相关文章:

  • 2.3进程同步与互斥
  • 计算机组成原理之第一章计算机系统概述
  • 无服务器架构下的ACID特性实现方案
  • 四平方和定理
  • 搜索郑州网站服装网站建设
  • 广西临桂建设局网站如何做家乡网站
  • Leetcode2166-设计位集
  • 三种方法解——力扣206.反转链表
  • 企业网站广告网站响应式是什么意思
  • 湖南省郴州市邮编东莞seo网站建设公司
  • 差分信号可以分解为共模信号与差模信号
  • **标题:发散创新:探索SSR渲染技术的深度实现****摘要**:本文将深入探讨服务端渲染(SSR)技术的原理、优势以及实
  • 计算机视觉(opencv)——MediaPipe 实现手部关键点检测与可视化
  • 贵州省建设学校官方网站昆明网络公司开发
  • 没有版权可以做视频网站吗设计之家素材
  • Tomcat是一个容器
  • Easyx图形库应用(和Server程序进行交互)
  • Python自学25 - Django快速上手
  • 太原云起时网站建设广东知名网站建设
  • AI学习日记——深度学习
  • 如何设置PostgreSQL表字段为自增主键
  • 排版工具:也说Markdown的使用方法
  • 分销网站建站wordpress调用推荐文章代码
  • 数据湖Hudi-读取流程可视化
  • 智能环境感知屏幕自适应系统:原理、架构与实现
  • 中卫网站制作公司公司网站seo怎么做
  • Python高效搜索实现:从数据海洋到精准信息的智能导航
  • 安安网站建设优惠的网站快排公司电话
  • Elasticsearch 备份:snapshot 镜像使用篇
  • 10月12日星期天今日早报简报微语报早读