根式方程:结构联想巧用三角代换
解方程组:
{x(1−y)+y(1−x)=12,xy+(1−x)(1−y)=32. \left\{\begin{array}{l}\sqrt{x(1-y)}+\sqrt{y(1-x)}=\frac{1}{2},\\\sqrt{x y}+\sqrt{(1-x)(1-y)}=\frac{\sqrt{3}}{2}.\end{array}\right. {x(1−y)+y(1−x)=21,xy+(1−x)(1−y)=23.
###分析
由题中结构和 0⩽x⩽1,0⩽y⩽10\leqslant x\leqslant 1, 0\leqslant y\leqslant 10⩽x⩽1,0⩽y⩽1,联想到用 x=sin2α,y=sin2βx=\sin^{2}\alpha, y=\sin^{2}\betax=sin2α,y=sin2β 代换解决。
###解
依题意有 0⩽x⩽1,0⩽y⩽10\leqslant x\leqslant 1, 0\leqslant y\leqslant 10⩽x⩽1,0⩽y⩽1,可设 x=sin2α,y=sin2βx=\sin^{2}\alpha, y=\sin^{2}\betax=sin2α,y=sin2β,且 0⩽α,β⩽π20\leqslant \alpha,\beta\leqslant\frac{\pi}{2}0⩽α,β⩽2π,
则原方程组可化为
{sinαcosβ+sinβcosα=12,sinαsinβ+cosαcosβ=32, \left\{\begin{array}{l}\sin\alpha\cos\beta+\sin\beta\cos\alpha=\frac{1}{2},\\\sin\alpha\sin\beta+\cos\alpha\cos\beta=\frac{\sqrt{3}}{2},\end{array}\right. {sinαcosβ+sinβcosα=21,sinαsinβ+cosαcosβ=23,
即
{sin(α+β)=12,cos(α−β)=32. \left\{\begin{array}{l}\sin(\alpha+\beta)=\frac{1}{2},\\\cos(\alpha-\beta)=\frac{\sqrt{3}}{2}.\end{array}\right. {sin(α+β)=21,cos(α−β)=23.
因为 0⩽α+β⩽π,−π2⩽α−β⩽π20\leqslant\alpha+\beta\leqslant\pi, -\frac{\pi}{2}\leqslant\alpha-\beta\leqslant\frac{\pi}{2}0⩽α+β⩽π,−2π⩽α−β⩽2π,所以
{α+β=π6 或 5π6,α−β=π6 或 −π6, \left\{\begin{array}{l}\alpha+\beta=\frac{\pi}{6}\text{ 或 }\frac{5\pi}{6},\\\alpha-\beta=\frac{\pi}{6}\text{ 或 }-\frac{\pi}{6},\end{array}\right. {α+β=6π 或 65π,α−β=6π 或 −6π,
故
- {α=π6,β=0\left\{\begin{array}{l}\alpha=\frac{\pi}{6},\\\beta=0\end{array}\right.{α=6π,β=0
- {α=π2,β=π3\left\{\begin{array}{l}\alpha=\frac{\pi}{2},\\\beta=\frac{\pi}{3}\end{array}\right.{α=2π,β=3π
- {α=0,β=π6\left\{\begin{array}{l}\alpha=0,\\\beta=\frac{\pi}{6}\end{array}\right.{α=0,β=6π
- {α=π3,β=π2.\left\{\begin{array}{l}\alpha=\frac{\pi}{3},\\\beta=\frac{\pi}{2}.\end{array}\right.{α=3π,β=2π.
所以原方程组的解:
- {x=14,y=0\left\{\begin{array}{l}x=\frac{1}{4},\\y=0\end{array}\right.{x=41,y=0
- {x=1,y=34\left\{\begin{array}{l}x=1,\\y=\frac{3}{4}\end{array}\right.{x=1,y=43
- {x=0,y=14\left\{\begin{array}{l}x=0,\\y=\frac{1}{4}\end{array}\right.{x=0,y=41
- {x=34,y=1.\left\{\begin{array}{l}x=\frac{3}{4},\\y=1.\end{array}\right.{x=43,y=1.