基于高斯函数傅里叶变换的函数傅里叶变换求解(含多项式与三角函数项)
题目:
问题 4. 设 α>0\alpha > 0α>0。基于 e−αx2/2e^{-\alpha x^2/2}e−αx2/2 的傅里叶变换,求下列函数的傅里叶变换:
(a) f(x)=xe−αx2/2f(x) = xe^{-\alpha x^2/2}f(x)=xe−αx2/2;
(b) f(x)=x2e−αx2/2f(x) = x^2 e^{-\alpha x^2/2}f(x)=x2e−αx2/2;
© e−αx2/2cos(βx)e^{-\alpha x^2/2} \cos(\beta x)e−αx2/2cos(βx);
(d) e−αx2/2sin(βx)e^{-\alpha x^2/2} \sin(\beta x)e−αx2/2sin(βx);
(e) xe−αx2/2cos(βx)xe^{-\alpha x^2/2} \cos(\beta x)xe−αx2/2cos(βx);
(f) xe−αx2/2sin(βx)xe^{-\alpha x^2/2} \sin(\beta x)xe−αx2/2sin(βx).
解答:
首先,回忆傅里叶变换的定义。我们采用以下定义:
f^(k)=F{f(x)}=∫−∞∞f(x)e−ikx dx
\hat{f}(k) = \mathcal{F}\{f(x)\} = \int_{-\infty}^{\infty} f(x) e^{-ikx} \, dx
f^(k)=F{f(x)}=∫−∞∞f(x)e−ikxdx
基函数 g(x)=e−αx2/2g(x) = e^{-\alpha x^2/2}g(x)=e−αx2/2 的傅里叶变换为:
g^(k)=2παe−k2/(2α)
\hat{g}(k) = \sqrt{\frac{2\pi}{\alpha}} e^{-k^2/(2\alpha)}
g^(k)=α2πe−k2/(2α)
我们将利用傅里叶变换的性质,如导数性质(F{xf(x)}=iddkf^(k)\mathcal{F}\{x f(x)\} = i \frac{d}{dk} \hat{f}(k)F{xf(x)}=idkdf^(k))和频率平移性质(F{f(x)eiβx}=f^(k−β)\mathcal{F}\{f(x) e^{i\beta x}\} = \hat{f}(k - \beta)F{f(x)eiβx}=f^(k−β)),来求解各部分的傅里叶变换。
(a) f(x)=xe−αx2/2f(x) = xe^{-\alpha x^2/2}f(x)=xe−αx2/2
由于 f(x)=xg(x)f(x) = x g(x)f(x)=xg(x),有:
f^(k)=iddkg^(k)
\hat{f}(k) = i \frac{d}{dk} \hat{g}(k)
f^(k)=idkdg^(k)
计算导数:
ddkg^(k)=ddk(2παe−k2/(2α))=2παe−k2/(2α)(−kα)=−kαg^(k)
\frac{d}{dk} \hat{g}(k) = \frac{d}{dk} \left( \sqrt{\frac{2\pi}{\alpha}} e^{-k^2/(2\alpha)} \right) = \sqrt{\frac{2\pi}{\alpha}} e^{-k^2/(2\alpha)} \left( -\frac{k}{\alpha} \right) = -\frac{k}{\alpha} \hat{g}(k)
dkdg^(k)=dkd(α2πe−k2/(2α))=α2πe−k2/(2α)(−αk)=−αkg^(k)
因此:
f^(k)=i(−kαg^(k))=−ikαg^(k)=−ikα2παe−k2/(2α)
\hat{f}(k) = i \left( -\frac{k}{\alpha} \hat{g}(k) \right) = -i \frac{k}{\alpha} \hat{g}(k) = -i \frac{k}{\alpha} \sqrt{\frac{2\pi}{\alpha}} e^{-k^2/(2\alpha)}
f^(k)=i(−αkg^(k))=−iαkg^(k)=−iαkα2πe−k2/(2α)
(b) f(x)=x2e−αx2/2f(x) = x^2 e^{-\alpha x^2/2}f(x)=x2e−αx2/2
由于 f(x)=x2g(x)f(x) = x^2 g(x)f(x)=x2g(x),有:
f^(k)=i2d2dk2g^(k)=−d2dk2g^(k)
\hat{f}(k) = i^2 \frac{d^2}{dk^2} \hat{g}(k) = -\frac{d^2}{dk^2} \hat{g}(k)
f^(k)=i2dk2d2g^(k)=−dk2d2g^(k)
先计算一阶导数:
ddkg^(k)=−kαg^(k)
\frac{d}{dk} \hat{g}(k) = -\frac{k}{\alpha} \hat{g}(k)
dkdg^(k)=−αkg^(k)
再计算二阶导数:
d2dk2g^(k)=ddk(−kαg^(k))=−1αg^(k)−kα(−kαg^(k))=−1αg^(k)+k2α2g^(k)=g^(k)(k2α2−1α)
\frac{d^2}{dk^2} \hat{g}(k) = \frac{d}{dk} \left( -\frac{k}{\alpha} \hat{g}(k) \right) = -\frac{1}{\alpha} \hat{g}(k) - \frac{k}{\alpha} \left( -\frac{k}{\alpha} \hat{g}(k) \right) = -\frac{1}{\alpha} \hat{g}(k) + \frac{k^2}{\alpha^2} \hat{g}(k) = \hat{g}(k) \left( \frac{k^2}{\alpha^2} - \frac{1}{\alpha} \right)
dk2d2g^(k)=dkd(−αkg^(k))=−α1g^(k)−αk(−αkg^(k))=−α1g^(k)+α2k2g^(k)=g^(k)(α2k2−α1)
因此:
f^(k)=−g^(k)(k2α2−1α)=g^(k)(1α−k2α2)=1α(1−k2α)g^(k)=1α(1−k2α)2παe−k2/(2α)
\hat{f}(k) = - \hat{g}(k) \left( \frac{k^2}{\alpha^2} - \frac{1}{\alpha} \right) = \hat{g}(k) \left( \frac{1}{\alpha} - \frac{k^2}{\alpha^2} \right) = \frac{1}{\alpha} \left(1 - \frac{k^2}{\alpha} \right) \hat{g}(k) = \frac{1}{\alpha} \left(1 - \frac{k^2}{\alpha} \right) \sqrt{\frac{2\pi}{\alpha}} e^{-k^2/(2\alpha)}
f^(k)=−g^(k)(α2k2−α1)=g^(k)(α1−α2k2)=α1(1−αk2)g^(k)=α1(1−αk2)α2πe−k2/(2α)
© f(x)=e−αx2/2cos(βx)f(x) = e^{-\alpha x^2/2} \cos(\beta x)f(x)=e−αx2/2cos(βx)
利用余弦函数的指数形式:cos(βx)=eiβx+e−iβx2\cos(\beta x) = \frac{e^{i\beta x} + e^{-i\beta x}}{2}cos(βx)=2eiβx+e−iβx,有:
f(x)=12[g(x)eiβx+g(x)e−iβx]
f(x) = \frac{1}{2} \left[ g(x) e^{i\beta x} + g(x) e^{-i\beta x} \right]
f(x)=21[g(x)eiβx+g(x)e−iβx]
由频率平移性质:
F{g(x)eiβx}=g^(k−β),F{g(x)e−iβx}=g^(k+β)
\mathcal{F}\{g(x) e^{i\beta x}\} = \hat{g}(k - \beta), \quad \mathcal{F}\{g(x) e^{-i\beta x}\} = \hat{g}(k + \beta)
F{g(x)eiβx}=g^(k−β),F{g(x)e−iβx}=g^(k+β)
因此:
f^(k)=12[g^(k−β)+g^(k+β)]=122πα[e−(k−β)2/(2α)+e−(k+β)2/(2α)]
\hat{f}(k) = \frac{1}{2} \left[ \hat{g}(k - \beta) + \hat{g}(k + \beta) \right] = \frac{1}{2} \sqrt{\frac{2\pi}{\alpha}} \left[ e^{-(k - \beta)^2/(2\alpha)} + e^{-(k + \beta)^2/(2\alpha)} \right]
f^(k)=21[g^(k−β)+g^(k+β)]=21α2π[e−(k−β)2/(2α)+e−(k+β)2/(2α)]
(d) f(x)=e−αx2/2sin(βx)f(x) = e^{-\alpha x^2/2} \sin(\beta x)f(x)=e−αx2/2sin(βx)
利用正弦函数的指数形式:sin(βx)=eiβx−e−iβx2i\sin(\beta x) = \frac{e^{i\beta x} - e^{-i\beta x}}{2i}sin(βx)=2ieiβx−e−iβx,有:
f(x)=12i[g(x)eiβx−g(x)e−iβx]
f(x) = \frac{1}{2i} \left[ g(x) e^{i\beta x} - g(x) e^{-i\beta x} \right]
f(x)=2i1[g(x)eiβx−g(x)e−iβx]
由频率平移性质:
f^(k)=12i[g^(k−β)−g^(k+β)]=12i2πα[e−(k−β)2/(2α)−e−(k+β)2/(2α)]
\hat{f}(k) = \frac{1}{2i} \left[ \hat{g}(k - \beta) - \hat{g}(k + \beta) \right] = \frac{1}{2i} \sqrt{\frac{2\pi}{\alpha}} \left[ e^{-(k - \beta)^2/(2\alpha)} - e^{-(k + \beta)^2/(2\alpha)} \right]
f^(k)=2i1[g^(k−β)−g^(k+β)]=2i1α2π[e−(k−β)2/(2α)−e−(k+β)2/(2α)]
注意:12i=−i12\frac{1}{2i} = -i \frac{1}{2}2i1=−i21,因此也可写为:
f^(k)=−i22πα[e−(k−β)2/(2α)−e−(k+β)2/(2α)]
\hat{f}(k) = -\frac{i}{2} \sqrt{\frac{2\pi}{\alpha}} \left[ e^{-(k - \beta)^2/(2\alpha)} - e^{-(k + \beta)^2/(2\alpha)} \right]
f^(k)=−2iα2π[e−(k−β)2/(2α)−e−(k+β)2/(2α)]
(e) f(x)=xe−αx2/2cos(βx)f(x) = xe^{-\alpha x^2/2} \cos(\beta x)f(x)=xe−αx2/2cos(βx)
令 h(x)=e−αx2/2cos(βx)h(x) = e^{-\alpha x^2/2} \cos(\beta x)h(x)=e−αx2/2cos(βx),则 f(x)=xh(x)f(x) = x h(x)f(x)=xh(x)。由部分 © 得:
h^(k)=12[g^(k−β)+g^(k+β)]
\hat{h}(k) = \frac{1}{2} \left[ \hat{g}(k - \beta) + \hat{g}(k + \beta) \right]
h^(k)=21[g^(k−β)+g^(k+β)]
因此:
f^(k)=iddkh^(k)=i2[ddkg^(k−β)+ddkg^(k+β)]
\hat{f}(k) = i \frac{d}{dk} \hat{h}(k) = \frac{i}{2} \left[ \frac{d}{dk} \hat{g}(k - \beta) + \frac{d}{dk} \hat{g}(k + \beta) \right]
f^(k)=idkdh^(k)=2i[dkdg^(k−β)+dkdg^(k+β)]
由导数计算:
ddkg^(k−β)=g^′(k−β)=−k−βαg^(k−β),ddkg^(k+β)=g^′(k+β)=−k+βαg^(k+β)
\frac{d}{dk} \hat{g}(k - \beta) = \hat{g}'(k - \beta) = -\frac{k - \beta}{\alpha} \hat{g}(k - \beta), \quad \frac{d}{dk} \hat{g}(k + \beta) = \hat{g}'(k + \beta) = -\frac{k + \beta}{\alpha} \hat{g}(k + \beta)
dkdg^(k−β)=g^′(k−β)=−αk−βg^(k−β),dkdg^(k+β)=g^′(k+β)=−αk+βg^(k+β)
所以:
f^(k)=i2[−k−βαg^(k−β)−k+βαg^(k+β)]=−i2α[(k−β)g^(k−β)+(k+β)g^(k+β)]
\hat{f}(k) = \frac{i}{2} \left[ -\frac{k - \beta}{\alpha} \hat{g}(k - \beta) - \frac{k + \beta}{\alpha} \hat{g}(k + \beta) \right] = -\frac{i}{2\alpha} \left[ (k - \beta) \hat{g}(k - \beta) + (k + \beta) \hat{g}(k + \beta) \right]
f^(k)=2i[−αk−βg^(k−β)−αk+βg^(k+β)]=−2αi[(k−β)g^(k−β)+(k+β)g^(k+β)]
显式形式:
f^(k)=−i2α2πα[(k−β)e−(k−β)2/(2α)+(k+β)e−(k+β)2/(2α)]
\hat{f}(k) = -\frac{i}{2\alpha} \sqrt{\frac{2\pi}{\alpha}} \left[ (k - \beta) e^{-(k - \beta)^2/(2\alpha)} + (k + \beta) e^{-(k + \beta)^2/(2\alpha)} \right]
f^(k)=−2αiα2π[(k−β)e−(k−β)2/(2α)+(k+β)e−(k+β)2/(2α)]
(f) f(x)=xe−αx2/2sin(βx)f(x) = xe^{-\alpha x^2/2} \sin(\beta x)f(x)=xe−αx2/2sin(βx)
令 h(x)=e−αx2/2sin(βx)h(x) = e^{-\alpha x^2/2} \sin(\beta x)h(x)=e−αx2/2sin(βx),则 f(x)=xh(x)f(x) = x h(x)f(x)=xh(x)。由部分 (d) 得:
h^(k)=12i[g^(k−β)−g^(k+β)]
\hat{h}(k) = \frac{1}{2i} \left[ \hat{g}(k - \beta) - \hat{g}(k + \beta) \right]
h^(k)=2i1[g^(k−β)−g^(k+β)]
因此:
f^(k)=iddkh^(k)=iddk(12i[g^(k−β)−g^(k+β)])=12ddk[g^(k−β)−g^(k+β)]
\hat{f}(k) = i \frac{d}{dk} \hat{h}(k) = i \frac{d}{dk} \left( \frac{1}{2i} \left[ \hat{g}(k - \beta) - \hat{g}(k + \beta) \right] \right) = \frac{1}{2} \frac{d}{dk} \left[ \hat{g}(k - \beta) - \hat{g}(k + \beta) \right]
f^(k)=idkdh^(k)=idkd(2i1[g^(k−β)−g^(k+β)])=21dkd[g^(k−β)−g^(k+β)]
计算导数:
ddk[g^(k−β)−g^(k+β)]=g^′(k−β)−g^′(k+β)=−k−βαg^(k−β)+k+βαg^(k+β)
\frac{d}{dk} \left[ \hat{g}(k - \beta) - \hat{g}(k + \beta) \right] = \hat{g}'(k - \beta) - \hat{g}'(k + \beta) = -\frac{k - \beta}{\alpha} \hat{g}(k - \beta) + \frac{k + \beta}{\alpha} \hat{g}(k + \beta)
dkd[g^(k−β)−g^(k+β)]=g^′(k−β)−g^′(k+β)=−αk−βg^(k−β)+αk+βg^(k+β)
所以:
f^(k)=12[−k−βαg^(k−β)+k+βαg^(k+β)]=12α[−(k−β)g^(k−β)+(k+β)g^(k+β)]
\hat{f}(k) = \frac{1}{2} \left[ -\frac{k - \beta}{\alpha} \hat{g}(k - \beta) + \frac{k + \beta}{\alpha} \hat{g}(k + \beta) \right] = \frac{1}{2\alpha} \left[ - (k - \beta) \hat{g}(k - \beta) + (k + \beta) \hat{g}(k + \beta) \right]
f^(k)=21[−αk−βg^(k−β)+αk+βg^(k+β)]=2α1[−(k−β)g^(k−β)+(k+β)g^(k+β)]
显式形式:
f^(k)=12α2πα[−(k−β)e−(k−β)2/(2α)+(k+β)e−(k+β)2/(2α)]
\hat{f}(k) = \frac{1}{2\alpha} \sqrt{\frac{2\pi}{\alpha}} \left[ - (k - \beta) e^{-(k - \beta)^2/(2\alpha)} + (k + \beta) e^{-(k + \beta)^2/(2\alpha)} \right]
f^(k)=2α1α2π[−(k−β)e−(k−β)2/(2α)+(k+β)e−(k+β)2/(2α)]
以上为各函数的傅里叶变换结果。所有结果均基于基函数 g(x)=e−αx2/2g(x) = e^{-\alpha x^2/2}g(x)=e−αx2/2 的傅里叶变换 g^(k)=2παe−k2/(2α)\hat{g}(k) = \sqrt{\frac{2\pi}{\alpha}} e^{-k^2/(2\alpha)}g^(k)=α2πe−k2/(2α) 推导得出。