Python利用ffmpeg实现rtmp视频拉流和推流
总体实现:
- 根据rtmp_url即视频流地址,上传每一帧至rtmp_url_label生成带识别框的新视频流
- 同时从识别到目标帧开始,会生成15s带识别框的视频并带3张目标帧图片
- 同时会将生成的视频、图片以及json文件上传到MinIO,并将识别后的相关结果集存放至mq
解决的Bug和小问题:
- 先初始化mq需要的channel,避免出现 Stream connection lost: IndexError(‘pop from an empty deque’)
- 使用了codec_list从而拿到正确的video_writer,避免出现 [ERROR:0@70.755] global cap_ffmpeg_impl.hpp:3207 open Could not find encoder for codec_id=27, error: Encoder not found
- 删除本地临时文件前video_writer及时释放资源,避免出现 PermissionError: [WinError 32] 另一个程序正在使用此文件,进程无法访问
- 使用了ffmpeg将视频转码为h264,避免出现 视频播放器能播放视频,前端无法播放
import json
import logging
import os
import subprocess
import time
import traceback
import uuid
from threading import Threadimport cv2
import numpy as np
import pika
from PIL import Image, ImageDraw, ImageFontfrom detect.entity.ResponseResult import ResponseResult
from detect.entity.vo.analysis_result import AnalysisResult
from detect.mq import mq_connect
from detect.utils.file_utils import load_config
from detect.utils.minio_utils import upload_fileconfig = load_config()
yolo_conf = config['yolo']
CONF_THRESHOLD = yolo_conf['conf_threshold']
MINIO_CONFIG = config['minio_config']
FONT_PATH = config['font_path']
ffmpeg = config['ffmpeg']
JSON_RESULT_BASE = config['json_result_base']
animals_queues = config['mq_config']['animals_queues']
cp_queues = config['mq_config']['cp_queues']
excavator_queues = config['mq_config']['excavator_queues']
fire_queues = config['mq_config']['fire_queues']
pine_queues = config['mq_config']['pine_queues']logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)class VideoStreamManager:def __init__(self):self.url_set = set()self.tasks = {}# 创建处理任务def create_video_stream_task(self, rtmp_url):if rtmp_url in self.url_set:return Falseself.url_set.add(rtmp_url)cap = cv2.VideoCapture(rtmp_url, cv2.CAP_FFMPEG)self.tasks[rtmp_url] = {'cap': cap,'thread': None, # 防止重复创建线程}return Truedef draw_image_label(self, source, dest, boxes, confidences, chinese_names):img = source # 读取图片image_pil = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) # 转PILdraw = ImageDraw.Draw(image_pil)font = ImageFont.truetype(FONT_PATH, 25)for i in range(len(boxes)):box = boxes[i]confidence = confidences[i]chinese_name = chinese_names[i]left_top = (box[0], box[1])right_bottom = (box[2], box[3])draw.rectangle([left_top, right_bottom], fill=None, outline=(0, 255, 0), width=2) # 矩形框text = '{} {:.2f}'.format(chinese_name, confidence)text_bbox = draw.textbbox((0, 0), text, font=font)text_width = text_bbox[2] - text_bbox[0] # 文字宽度rect_width = right_bottom[0] - left_top[0] # 矩形宽度text_x = left_top[0] + (max(rect_width - text_width, 0)) // 2 # 文本位置draw.text((text_x, max(box[1] - font.size, 0)), text, font=font, fill='red') # 物种名称 +置信度image_cv = cv2.cvtColor(np.array(image_pil), cv2.COLOR_RGB2BGR)cv2.imwrite(dest, image_cv) # 生成图片# 独立线程处理模型识别任务def detect_frame(self, rtmp_url, frame, detector, conf_threshold, frame_count, frame_interval, detect_target_dict,video_writer, video_stream_img_path):# 跳帧,不做识别,返回原始帧if frame_count % frame_interval != 0:cv2.imwrite(video_stream_img_path, frame)if detect_target_dict['detected'] and detect_target_dict['frame_count'] < detect_target_dict['frame_max']:detect_target_dict['frame_count'] += 1video_writer.write(frame)returnboxes, confidences, class_ids, class_names = detector.predict(frame, conf_threshold)try:chinese_names = []for name in class_names:chinese_name = detector.class_name_mapping.get(name, name)chinese_names.append(chinese_name)# 检测到目标if boxes:# 视频流图片画框self.draw_image_label(frame, video_stream_img_path, boxes, confidences, chinese_names)def save_image_and_video_frame():# 保存图片if detect_target_dict['target_frame_count'] < 3:frame_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))frame_name = f"{str(uuid.uuid4())}.jpg"frame_path = os.path.join(frame_dir, frame_name)cv2.imwrite(frame_path, frame)minio_path = upload_file(MINIO_CONFIG['bucket_name'], frame_name, frame_path, detect_target_dict['tid'])result_data = {"box": [[str(x) for x in box] for box in boxes],"conf": confidences,"name": chinese_names,"total": len(boxes)}res = AnalysisResult(comment="图片分析成功" if boxes else "未检测到目标",endTime=int(time.time() * 1000),status=200 if boxes else 204,resultData=result_data,dest=minio_path,tid=detect_target_dict['tid'],frame_index=[detect_target_dict['frame_count']])detect_target_dict['results'].append(res.to_dict())detect_target_dict['target_frame_indexes'].append(detect_target_dict['frame_count'])# 存储视频帧image_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) # 转PILdraw = ImageDraw.Draw(image_pil)font = ImageFont.truetype(FONT_PATH, 25)for i in range(len(boxes)):box = boxes[i]confidence = confidences[i]cn = chinese_names[i]left_top = (box[0], box[1])right_bottom = (box[2], box[3])draw.rectangle([left_top, right_bottom], fill=None, outline=(0, 255, 0), width=2) # 矩形框text = '{} {:.2f}'.format(cn, confidence)text_bbox = draw.textbbox((0, 0), text, font=font)text_width = text_bbox[2] - text_bbox[0] # 文字宽度rect_width = right_bottom[0] - left_top[0] # 矩形宽度text_x = left_top[0] + (max(rect_width - text_width, 0)) // 2 # 文本位置draw.text((text_x, max(box[1] - font.size, 0)), text, font=font, fill='red') # 物种名称 +置信度image_cv = cv2.cvtColor(np.array(image_pil), cv2.COLOR_RGB2BGR)video_writer.write(image_cv) # 写入视频帧if not detect_target_dict['detected']:save_image_and_video_frame()detect_target_dict['detected'] = Truedetect_target_dict['frame_count'] += 1detect_target_dict['target_frame_count'] += 1else:if detect_target_dict['frame_count'] < detect_target_dict['frame_max']:save_image_and_video_frame()detect_target_dict['frame_count'] += 1detect_target_dict['target_frame_count'] += 1else:detect_target_dict['detected'] = Falsedetect_target_dict['frame_count'] = 0else:# 视频流存储原始帧cv2.imwrite(video_stream_img_path, frame)if detect_target_dict['detected']:if detect_target_dict['frame_count'] < detect_target_dict['frame_max']:detect_target_dict['frame_count'] += 1else:detect_target_dict['detected'] = Falsedetect_target_dict['frame_count'] = 0except Exception as e:logger.error(f"处理图像失败: {str(e)}")logger.error(f"错误堆栈: {traceback.format_exc()}")# 开始处理任务def start_video_stream_task(self, rtmp_url, rtmp_url_label, detector, task_manager, conf_threshold=CONF_THRESHOLD,model=-1, taskId="", device="", deviceNum=""):print(f'开始处理来自 {rtmp_url} 的视频流,置信度 {conf_threshold} ,模型 {model}')if model == 0:channel = mq_connect.animals_video_stream_channelchannel.queue_declare(queue=animals_queues[1], durable=True)elif model == 1:channel = mq_connect.fire_video_stream_channelchannel.queue_declare(queue=fire_queues[1], durable=True)elif model == 2:channel = mq_connect.pine_video_stream_channelchannel.queue_declare(queue=pine_queues[1], durable=True)elif model == 3:channel = mq_connect.cp_video_stream_channelchannel.queue_declare(queue=cp_queues[1], durable=True)else: # 4channel = mq_connect.excavator_video_stream_channelchannel.queue_declare(queue=excavator_queues[1], durable=True)task = self.tasks[rtmp_url]cap = task['cap']size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))fps = int(cap.get(cv2.CAP_PROP_FPS))codec_list = ['mp4v', 'avc1', 'X264', 'XVID', 'MJPG']video_writer = Nonelabel_file_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))label_video_path = os.path.join(label_file_dir, f"video_{uuid.uuid4()}.mp4") # 15s视频for codec in codec_list:fourcc = cv2.VideoWriter.fourcc(*codec)vw = cv2.VideoWriter(label_video_path, fourcc, fps, (width, height))if vw.isOpened():video_writer = vwbreakif not video_writer.isOpened():logger.error(f"无法创建输出视频文件: {label_video_path}")error_frame = AnalysisResult(comment=f"无法创建输出视频文件",createTime=int(time.time() * 1000),status=500,tid=uuid.uuid4())res = AnalysisResult(comment=f"无法创建输出视频文件",createTime=int(time.time() * 1000),endTime=int(time.time() * 1000),status=500,tid=uuid.uuid4(),resultData={},frame_index=[])res = [error_frame.to_dict()] * 3 + [res.to_dict()]json_filename = f"result_{str(uuid.uuid4())}_batch0.json"json_path = os.path.join(JSON_RESULT_BASE, json_filename)os.makedirs(os.path.dirname(json_path), exist_ok=True)tid = str(uuid.uuid4())json_content = {"device": device,"task_id": taskId,"tid": tid,"results": [res],'model': model,'device_num': deviceNum}with open(json_path, 'w', encoding='utf-8') as f:json.dump(json_content, f, ensure_ascii=False, indent=2)upload_file(MINIO_CONFIG['bucket_name'], json_filename, json_path, tid)# 写入消息到mqself.write_mq_msg(channel, model, json_content)returncommand = [ffmpeg,'-hide_banner','-loglevel', 'warning','-y','-re','-f', 'rawvideo','-vcodec', 'rawvideo','-pix_fmt', 'bgr24','-s', str(size[0]) + 'x' + str(size[1]),'-r', str(fps),'-i', '-','-c:v', 'libx264','-pix_fmt', 'yuv420p','-preset', 'fast','-f', 'flv',rtmp_url_label]pipe = subprocess.Popen(command, stdin=subprocess.PIPE)try:frame_count = 0 # 当前处理到第几帧frame_interval = 12 # 每隔多少帧处理一次detect_target_dict = {"tid": str(uuid.uuid4()),"detected": False, # 是否检测到目标"frame_count": 0, # 从检测到目标后开始计算"target_frame_count": 0, # 含有目标帧的图片数量"frame_max": 15 * fps, # 检测到目标后录制的视频长度 15s'results': [], # 从探测到目标后的结果集"target_frame_indexes": [] # 从探测到目标后的视频帧坐标}# 视频转码def convert_video(input_file, output_file):cmd = [ffmpeg,'-hide_banner','-loglevel', 'warning','-i', input_file,'-vcodec', 'libx264','-preset', 'fast','-crf', '23','-acodec', 'aac',output_file]subprocess.run(cmd)while True:ret, frame = cap.read()if not ret:breakthread = self.tasks[rtmp_url]['thread']if not thread:video_stream_img_path = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), f"{uuid.uuid4()}.jpg")thread = Thread(target=self.detect_frame,args=(rtmp_url, frame, detector, conf_threshold, frame_count, frame_interval,detect_target_dict, video_writer, video_stream_img_path))thread.start()thread.join()self.tasks[rtmp_url]['thread'] = threadif os.path.exists(video_stream_img_path):img = cv2.imread(video_stream_img_path)pipe.stdin.write(img.tobytes())os.remove(video_stream_img_path)if detect_target_dict['detected']:# 当前视频处理完成if detect_target_dict['frame_count'] == detect_target_dict['frame_max']:video_writer.release()h264_video_file_path = os.path.join(label_file_dir, f"{uuid.uuid4()}.mp4")logger.info("开始视频转码")convert_video(label_video_path, h264_video_file_path) # 视频转码logger.info("视频转码完成")new_filename = f"{uuid.uuid4()}.mp4"minio_video_path = upload_file(MINIO_CONFIG['bucket_name'], new_filename,h264_video_file_path, detect_target_dict['tid'])if os.path.exists(label_video_path):os.remove(label_video_path)video_end_time = int(time.time() * 1000)video_result = AnalysisResult(comment="视频分析成功",endTime=video_end_time,dest=minio_video_path,status=200,tid=detect_target_dict['tid'],resultData={},frame_index=detect_target_dict['target_frame_indexes'])detect_target_dict['results'].append(video_result.to_dict())json_filename = f"result_{detect_target_dict['tid']}_batch0.json"json_path = os.path.join(JSON_RESULT_BASE, json_filename)os.makedirs(os.path.dirname(json_path), exist_ok=True)json_content = {"device": device,"task_id": taskId,"tid": detect_target_dict['tid'],"results": [detect_target_dict['results']],'model': model,'device_num': deviceNum}with open(json_path, 'w', encoding='utf-8') as f:json.dump(json_content, f, ensure_ascii=False, indent=2)# 写入消息到mqself.write_mq_msg(channel, model, json_content)upload_file(MINIO_CONFIG['bucket_name'], json_filename, json_path, detect_target_dict['tid'])print(f"识别出一个视频任务, tid={detect_target_dict['tid']}")# 更新数据label_video_path = os.path.join(label_file_dir, f"video_{uuid.uuid4()}.mp4") # 15s视频for codec in codec_list:fourcc = cv2.VideoWriter.fourcc(*codec)vw = cv2.VideoWriter(label_video_path, fourcc, fps, (width, height))if vw.isOpened():video_writer = vwbreakdetect_target_dict = {"tid": str(uuid.uuid4()),"detected": False, # 是否检测到目标"frame_count": 0, # 从检测到目标后开始计算"target_frame_count": 0, # 含有目标帧的图片数量"frame_max": 15 * fps, # 检测到目标后录制的视频长度 15s'results': [], # 从探测到目标后的结果集"target_frame_indexes": [] # 从探测到目标后的视频帧坐标}else:if not thread.is_alive():self.tasks[rtmp_url]['thread'] = Noneframe_count += 1if rtmp_url and rtmp_url in self.url_set:self.url_set.remove(rtmp_url)self.tasks[rtmp_url] = {'cap': None,'thread': None,'results': []}except Exception as e:logger.error(f"处理视频流失败: {str(e)}")logger.error(f"错误堆栈: {traceback.format_exc()}")raise efinally:cap.release()pipe.stdin.close()pipe.wait()video_writer.release()if os.path.exists(label_video_path):os.remove(label_video_path)# 写入结果到mqdef write_mq_msg(self, channel, model, msg):res = ResponseResult.success(data=[msg])json_data = json.dumps(res, ensure_ascii=False) # 先将对象转为字符串dict_data = json.loads(json_data) # 字符串转dictjson_data = json.dumps(dict_data, ensure_ascii=False) # dict转json字符串if model == 0:channel.basic_publish(exchange='', routing_key=animals_queues[1], body=json_data,properties=pika.BasicProperties(delivery_mode=2))elif model == 1:channel.basic_publish(exchange='', routing_key=fire_queues[1], body=json_data,properties=pika.BasicProperties(delivery_mode=2))elif model == 2:channel.basic_publish(exchange='', routing_key=pine_queues[1], body=json_data,properties=pika.BasicProperties(delivery_mode=2))elif model == 3:channel.basic_publish(exchange='', routing_key=cp_queues[1], body=json_data,properties=pika.BasicProperties(delivery_mode=2))elif model == 4:channel.basic_publish(exchange='', routing_key=excavator_queues[1], body=json_data,properties=pika.BasicProperties(delivery_mode=2))# 停止处理任务def stop_video_stream_task(self, rtmp_url, model=-1):if rtmp_url not in self.url_set:return f"{rtmp_url}视频流不存在或已处理"task = self.tasks[rtmp_url]# print(task)if task:if task['thread'] and task['thread'].is_alive():task['thread'].join()cap = task['cap']if cap:cap.release()if rtmp_url and rtmp_url in self.url_set:self.url_set.remove(rtmp_url)self.tasks[rtmp_url] = {'cap': None,'thread': None,'results': []}print(f'停止处理来自 {rtmp_url} 的视频流')return ""
代码还有很多值得优化的地方。。