磁共振成像原理(理论)13:选层 (Slice Select) -布洛赫方法
傅里叶方法用于设计选择性脉冲非常简单,但由此产生的包络函数并不准确,因为自旋系统在激发期间表现出非线性行为。为了产生更准确的射频脉冲,必须诉诸于布洛赫方程。忽略激发期间的自旋弛豫效应,我们可以在射频旋转框架中将布洛赫方程写为:
∂M⃗rot(z,t)∂t=γM⃗rot(z,t)×B⃗eff(z,t)(5.25)
\frac{\partial \vec{M}_{\text{rot}}(z, t)}{\partial t} = \gamma \vec{M}_{\text{rot}}(z, t) \times \vec{B}_{\text{eff}}(z, t) \tag{5.25}
∂t∂Mrot(z,t)=γMrot(z,t)×Beff(z,t)(5.25)
其中B⃗eff(t)\vec{B}_{\text{eff}}(t)Beff(t)也是定义在旋转坐标系下的:
B⃗eff(t)=B1e(t)i⃗′+(B0+Gzz−ωrfγ)k⃗′(5.26)
\vec{B}_{\text{eff}}(t) = B_1^e(t) \vec{i}' + \left( B_0 + G_z z - \frac{\omega_{rf}}{\gamma} \right) \vec{k}' \tag{5.26}
Beff(t)=B1e(t)i′+(B0+Gzz−γωrf)k′(5.26)
将激发频率 ωrf\omega_{rf}ωrf 设置为中央切片的拉莫尔频率:ωrf=ω0+γGzz0\omega_{rf} = \omega_0 + \gamma G_z z_0ωrf=ω0+γGzz0,如方程 (5.20) 所述,我们有:
B⃗eff(t)=B1e(t)i⃗′+Gz(z−z0)k⃗′(5.27)
\vec{B}_{\text{eff}}(t) = B_1^e(t) \vec{i}' + G_z (z - z_0) \vec{k}' \tag{5.27}
Beff(t)=B1e(t)i′+Gz(z−z0)k′(5.27)
将方程 (5.25) 重写为标量形式,我们有:
{dMx′(z,t)dt=γGz(z−z0)My′(z,t)dMy′(z,t)dt=−γGz(z−z0)Mx′(z,t)+γB1e(t)Mz′(z,t)dMz′(z,t)dt=−γB1e(t)My′(z,t)(5.28)
\left\{
\begin{array}{l}
\frac{d M_{x'}(z, t)}{dt} = \gamma G_{z}\left(z-z_{0}\right) M_{y'}(z, t) \\
\frac{d M_{y'}(z, t)}{dt} = -\gamma G_{z}\left(z-z_{0}\right) M_{x'}(z, t) + \gamma B_{1}^{e}(t) M_{z'}(z, t) \\
\frac{d M_{z'}(z, t)}{dt} = -\gamma B_{1}^{e}(t) M_{y'}(z, t)
\end{array}
\right. \tag{5.28}
⎩⎨⎧dtdMx′(z,t)=γGz(z−z0)My′(z,t)dtdMy′(z,t)=−γGz(z−z0)Mx′(z,t)+γB1e(t)Mz′(z,t)dtdMz′(z,t)=−γB1e(t)My′(z,t)(5.28)
方程 (5.28) 是设计幅度调制的切片选择射频脉冲的控制方程。假设在激发期间 Mz(z,t)=Mz0(z)M_z(z, t) = M_z^0(z)Mz(z,t)=Mz0(z),当翻转角较小时,这是成立的。那么,方程 (5.28) 变为:
{dMx′(z,t)dt=γGz(z−z0)My′(z,t)dMy′(z,t)dt=−γGz(z−z0)Mx′(z,t)+γB1(t)Mz′0(z)dMz′(z,t)dt=0(5.29) \begin{cases} \frac{d M_{x'}(z, t)}{d t} = \gamma G_z (z - z_0) M_{y'}(z, t) \\ \frac{d M_{y'}(z, t)}{d t} = -\gamma G_z (z - z_0) M_{x'}(z, t) + \gamma B_1(t) M_{z'}^0(z) \\ \frac{d M_{z'}(z, t)}{d t} = 0 \end{cases} \tag{5.29} ⎩⎨⎧dtdMx′(z,t)=γGz(z−z0)My′(z,t)dtdMy′(z,t)=−γGz(z−z0)Mx′(z,t)+γB1(t)Mz′0(z)dtdMz′(z,t)=0(5.29)
将前两个方程以复数形式组合得到:
dMx′y′(z,t)dt=dMx′(z,t)dt+idMy′(z,t)dt=−iγGz(z−z0)Mx′y′(z,t)+iγB1(t)Mz0(z)(5.30) \begin{aligned} \frac{d M_{x'y'}(z, t)}{d t} &= \frac{d M_{x'}(z, t)}{d t} + i \frac{d M_{y'}(z, t)}{d t} \\ &= -i \gamma G_z (z - z_0) M_{x'y'}(z, t) + i \gamma B_1(t) M_z^0(z) \end{aligned} \tag{5.30} dtdMx′y′(z,t)=dtdMx′(z,t)+idtdMy′(z,t)=−iγGz(z−z0)Mx′y′(z,t)+iγB1(t)Mz0(z)(5.30)
下面用拉普拉斯变换来求解微分方程,对上式5.30两边做拉氏变换:
L{dMx′y′(z,t)dt}=L{−iγGz(z−z0)Mx′y′(z,t)+iγB1(t)Mz0(z)}
\mathcal{L}\left\{\frac{dM_{x'y'}(z,t)}{dt}\right\} = \mathcal{L}\left\{-i\gamma G_z(z-z_0)M_{x'y'}(z,t) + i\gamma B_1(t)M_z^0(z)\right\}
L{dtdMx′y′(z,t)}=L{−iγGz(z−z0)Mx′y′(z,t)+iγB1(t)Mz0(z)}
替换s→ddts \rightarrow \frac{d}{dt}s→dtd可得
sMx′y′(z,s)=−iγGz(z−z0)Mx′y′(z,s)+iγB1(s)Mz0(z)sMx′y′(z,s)+iγGz(z−z0)Mx′y′(z,s)=iγB1(s)Mz0(z)Mx′y′(z,s)=iγB1(s)Mz0(z)s+iγGz(z−z0)
\begin{aligned}
sM_{x'y'}(z,s) &= -i\gamma G_z(z-z_0)M_{x'y'}(z,s) + i\gamma B_1(s)M_z^0(z) \\
sM_{x'y'}(z,s) + i\gamma G_z(z-z_0)M_{x'y'}(z,s) &= i\gamma B_1(s)M_z^0(z)\\
M_{x'y'}(z,s) &= \frac{i\gamma B_1(s)M_z^0(z)}{s + i\gamma G_z(z-z_0)}
\end{aligned}
sMx′y′(z,s)sMx′y′(z,s)+iγGz(z−z0)Mx′y′(z,s)Mx′y′(z,s)=−iγGz(z−z0)Mx′y′(z,s)+iγB1(s)Mz0(z)=iγB1(s)Mz0(z)=s+iγGz(z−z0)iγB1(s)Mz0(z)
应用拉氏逆变换
Mx′y′(z,t)=L−1{iγB1(s)Mz0(z)s+iγGz(z−z0)}
M_{x'y'}(z,t) = \mathcal{L}^{-1}\left\{\frac{i\gamma B_1(s)M_z^0(z)}{s + i\gamma G_z(z-z_0)}\right\}
Mx′y′(z,t)=L−1{s+iγGz(z−z0)iγB1(s)Mz0(z)}
即可求得在初始条件 Mx′y′(z,0)=0M_{x'y'}(z, 0) = 0Mx′y′(z,0)=0 下,方程 (5.30) 的解为:
Mx′y′(z,t)=iγMz0(z)e−iγGz(z−z0)t∫0tB1(τ)eiγGz(z−z0)τ dτ(5.31)
M_{x'y'}(z, t) = i \gamma M_z^0(z) e^{-i \gamma G_z (z - z_0) t} \int_0^t B_1(\tau) e^{i \gamma G_z (z - z_0) \tau} \, d\tau \tag{5.31}
Mx′y′(z,t)=iγMz0(z)e−iγGz(z−z0)t∫0tB1(τ)eiγGz(z−z0)τdτ(5.31)
该公式描述了任意时刻 ttt 的横向磁化强度空间分布。上述推导过程展示了如何通过拉普拉斯变换将时域微分方程转化为频域代数方程,求解后再通过逆变换得到时域解析解。
在脉冲结束时刻 t=τpt = \tau_pt=τp,公式(5.31)变为:
Mx′y′(z,τp)=iγMz0(z)e−iγGz(z−z0)τp∫0τpB1(τ)eiγGz(z−z0)τdτ(5.31a)
M_{x'y'}(z, \tau_p) = i \gamma M_z^0(z) e^{-i \gamma G_z (z - z_0) \tau_p} \int_0^{\tau_p} B_1(\tau) e^{i \gamma G_z (z - z_0) \tau} d\tau \tag{5.31a}
Mx′y′(z,τp)=iγMz0(z)e−iγGz(z−z0)τp∫0τpB1(τ)eiγGz(z−z0)τdτ(5.31a)
假设射频脉冲包络函数 B1e(t)B_1^e(t)B1e(t) 关于时间中点 t=τp/2t = \tau_p/2t=τp/2 对称,即 B1e(t)B_1^e(t)B1e(t) 是偶函数。进行变量代换,令 u=τ−τp/2u = \tau - \tau_p/2u=τ−τp/2,当 τ\tauτ 从 000 到 τp\tau_pτp 时,uuu 从 −τp/2-\tau_p/2−τp/2 到 τp/2\tau_p/2τp/2,同时dτ=dud\tau = dudτ=du,τ=u+τp/2\tau = u + \tau_p/2τ=u+τp/2
代入(5.31a)中的积分项可得:
∫0τpB1(τ)eiγGz(z−z0)τdτ=∫−τp/2τp/2B1e(u+τp2)eiγGz(z−z0)(u+τp2)du
\int_0^{\tau_p} B_1(\tau) e^{i \gamma G_z (z - z_0) \tau} d\tau = \int_{-\tau_p/2}^{\tau_p/2} B_1^e\left( u + \frac{\tau_p}{2} \right) e^{i \gamma G_z (z - z_0) (u + \frac{\tau_p}{2})} du
∫0τpB1(τ)eiγGz(z−z0)τdτ=∫−τp/2τp/2B1e(u+2τp)eiγGz(z−z0)(u+2τp)du
将指数项拆分:
=eiγGz(z−z0)τp2∫−τp/2τp/2B1e(u+τp2)eiγGz(z−z0)udu
= e^{i \gamma G_z (z - z_0) \frac{\tau_p}{2}} \int_{-\tau_p/2}^{\tau_p/2} B_1^e\left( u + \frac{\tau_p}{2} \right) e^{i \gamma G_z (z - z_0) u} du
=eiγGz(z−z0)2τp∫−τp/2τp/2B1e(u+2τp)eiγGz(z−z0)udu
将此结果代回公式(5.31a),并注意到 B1(t)=B1e(t)B_1(t) = B_1^e(t)B1(t)=B1e(t)(在旋转坐标系下):
Mx′y′(z,τp)=iγMz0(z)e−iγGz(z−z0)τp⋅eiγGz(z−z0)τp2∫−τp/2τp/2B1e(u+τp2)eiγGz(z−z0)udu
M_{x'y'}(z, \tau_p) = i \gamma M_z^0(z) e^{-i \gamma G_z (z - z_0) \tau_p} \cdot e^{i \gamma G_z (z - z_0) \frac{\tau_p}{2}} \int_{-\tau_p/2}^{\tau_p/2} B_1^e\left( u + \frac{\tau_p}{2} \right) e^{i \gamma G_z (z - z_0) u} du
Mx′y′(z,τp)=iγMz0(z)e−iγGz(z−z0)τp⋅eiγGz(z−z0)2τp∫−τp/2τp/2B1e(u+2τp)eiγGz(z−z0)udu
合并指数项:
e−iγGz(z−z0)τp⋅eiγGz(z−z0)τp2=e−iγGz(z−z0)τp2
e^{-i \gamma G_z (z - z_0) \tau_p} \cdot e^{i \gamma G_z (z - z_0) \frac{\tau_p}{2}} = e^{-i \gamma G_z (z - z_0) \frac{\tau_p}{2}}
e−iγGz(z−z0)τp⋅eiγGz(z−z0)2τp=e−iγGz(z−z0)2τp
最终得到脉冲结束时刻, t=τpt = \tau_pt=τp时的横向磁化强度表达式:
Mx′y′(z,τp)=iγMz0(z)e−iγGz(z−z0)τp2∫−τp/2τp/2B1e(t+τp2)eiγGz(z−z0)tdt(5.32)
M_{x'y'}(z, \tau_p) = i \gamma M_z^0(z) e^{-i \gamma G_z (z - z_0) \frac{\tau_p}{2}} \int_{-\tau_p/2}^{\tau_p/2} B_1^e\left( t + \frac{\tau_p}{2} \right) e^{i \gamma G_z (z - z_0) t} dt \tag{5.32}
Mx′y′(z,τp)=iγMz0(z)e−iγGz(z−z0)2τp∫−τp/2τp/2B1e(t+2τp)eiγGz(z−z0)tdt(5.32)
根据傅里叶分析理论,标准的傅里叶逆变换关系为:
g(f)=F−1{g(t)}=∫−∞∞g(t)ei2πftdt(5.33a)
g(f)=\mathcal{F}^{-1}\{g(t)\} = \int_{-\infty}^{\infty} g(t) e^{i2\pi f t} dt \tag{5.33a}
g(f)=F−1{g(t)}=∫−∞∞g(t)ei2πftdt(5.33a)
或
g(f)=∫−∞∞g(t)ei2πftdt(5.33b)
g(f) = \int_{-\infty}^{\infty} g(t) e^{i2\pi f t} dt \tag{5.33b}
g(f)=∫−∞∞g(t)ei2πftdt(5.33b)
其中 g(t)g(t)g(t) 是时域函数,g(f)g(f)g(f) 是其频域表示。在切片选择情境中,我们需要将空间频率与梯度场建立联系。由拉莫尔方程可知:
ω=γ(B0+Gzz)(5.33c)
\omega = \gamma (B_0+G_z z) \tag{5.33c}
ω=γ(B0+Gzz)(5.33c)
因此,空间位置 zzz 对应的频率为:
f=ω2π=γ2π(B0+Gzz)(5.33d)
f = \frac{\omega}{2\pi} = \frac{\gamma}{2\pi} (B_0+G_z z) \tag{5.33d}
f=2πω=2πγ(B0+Gzz)(5.33d)
对于相对位置 (z−z0)(z - z_0)(z−z0),对应的频率偏移为:
f=γ2πGz(z−z0)(5.33e)
f = \frac{\gamma}{2\pi} G_z (z - z_0) \tag{5.33e}
f=2πγGz(z−z0)(5.33e)
由于射频脉冲具有有限持续时间 τp\tau_pτp,积分限从 (−∞,∞)(-\infty, \infty)(−∞,∞) 变为 [−τp/2,τp/2][-\tau_p/2, \tau_p/2][−τp/2,τp/2]。
将上述关系代入标准傅里叶变换公式,并考虑有限积分区间,得到:
F−1{B1e(t+τp2)}∣f=∫−τp/2τp/2B1e(t+τp2)ei2πftdt(5.33f)
\mathcal{F}^{-1} \left\{ B_1^e\left(t + \frac{\tau_p}{2}\right) \right\}\bigg|_{f} = \int_{-\tau_p/2}^{\tau_p/2} B_1^e\left(t + \frac{\tau_p}{2}\right) e^{i2\pi f t} dt \tag{5.33f}
F−1{B1e(t+2τp)}f=∫−τp/2τp/2B1e(t+2τp)ei2πftdt(5.33f)
代入特定的频率值 f=γ2πGz(z−z0)f = \frac{\gamma}{2\pi} G_z (z - z_0)f=2πγGz(z−z0),即得到公式 (5.33):
∫−τp/2τp/2B1e(t+τp2)eiγGz(z−z0)t dt=F−1{B1e(t+τp2)}∣f=γ2πGz(z−z0)(5.33)
\begin{aligned}
\int_{-\tau_p/2}^{\tau_p/2} B_1^e\left( t + \frac{\tau_p}{2} \right) e^{i \gamma G_z (z - z_0) t} \, dt = \mathcal{F}^{-1} \left\{ B_1^e\left( t + \frac{\tau_p}{2} \right) \right\} \bigg|_{f = \frac{\gamma}{2\pi} G_z (z - z_0)}
\end{aligned} \tag{5.33}
∫−τp/2τp/2B1e(t+2τp)eiγGz(z−z0)tdt=F−1{B1e(t+2τp)}f=2πγGz(z−z0)(5.33)
我们可以将方程 (5.32) 重写为:
−iMx′y′(z,τp)γMz0(z)eiγGz(z−z0)τp/2=F−1{B1e(t+τp2)}∣f=γ2πGz(z−z0)(5.34) \frac{-i M_{x'y'}(z, \tau_p)}{\gamma M_z^0(z)} e^{i \gamma G_z (z - z_0) \tau_p / 2} = \mathcal{F}^{-1} \left\{ B_1^e\left( t + \frac{\tau_p}{2} \right) \right\} \bigg|_{f = \frac{\gamma}{2\pi} G_z (z - z_0)} \tag{5.34} γMz0(z)−iMx′y′(z,τp)eiγGz(z−z0)τp/2=F−1{B1e(t+2τp)}f=2πγGz(z−z0)(5.34)
方程 (5.34) 可以解释为:脉冲包络函数 B1e(t)B_1^e(t)B1e(t) 可以从所需切片选择轮廓的傅里叶变换中确定。为了更清楚地看到这一点,考虑激发由 ∣z−z0∣<Δz/2|z - z_0| < \Delta z / 2∣z−z0∣<Δz/2 定义的切片。脉冲后的横向磁化强度可以表示为:
Mx′y′(z,τp)∝Mz0(z)Π(z−z0Δz)(5.35)
M_{x'y'}(z, \tau_p) \propto M_z^0(z) \Pi\left( \frac{z - z_0}{\Delta z} \right) \tag{5.35}
Mx′y′(z,τp)∝Mz0(z)Π(Δzz−z0)(5.35)
将此结果代入方程 (5.34) 得到:
F−1{B1e(t+τp2)}∣f=γ2πGz(z−z0)∝Π(z−z0Δz)eiγGz(z−z0)τp/2(5.36)
\mathcal{F}^{-1} \left\{ B_1^e\left( t + \frac{\tau_p}{2} \right) \right\} \bigg|_{f = \frac{\gamma}{2\pi} G_z (z - z_0)} \propto \Pi\left( \frac{z - z_0}{\Delta z} \right) e^{i \gamma G_z (z - z_0) \tau_p / 2} \tag{5.36}
F−1{B1e(t+2τp)}f=2πγGz(z−z0)∝Π(Δzz−z0)eiγGz(z−z0)τp/2(5.36)
由于方程 (5.36) 是在小翻转角假设下推导的,我们预计傅里叶变换关系对于大翻转角激发会失效。在这种状态下,可能需要直接求解布洛赫方程。然而,实验结果表明,在许多应用中,傅里叶分析方法的准确性对于高达 90° 的翻转角仍然可以接受。