当前位置: 首页 > news >正文

从二维随机变量到多维随机变量

二维随机变量

X X X Y Y Y是定义在同一样本空间 Ω \varOmega Ω上的两个随机变量,称由它们组成的向量 ( X , Y ) (X, Y) (X,Y)为二维随机变量,亦称为二维随机向量,其中称 X X X Y Y Y是二维随机变量的分量。

采用多个随机变量去描述一个随机现象,所以定义中的随机变量 X X X Y Y Y是要求定义在同一个样本空间上。相对于二维随机变量 ( X , Y ) (X, Y) (X,Y),也称 X X X Y Y Y是一维随机变量。

若随机变量 X X X Y Y Y之间存在相互关系,则需要将 ( X , Y ) (X, Y) (X,Y)作为一个整体(向量)来进行研究。通过将两个随机变量 X X X Y Y Y组合成一个二维随机变量 ( X , Y ) (X, Y) (X,Y),可以更全面地描述和分析随机现象。

二维离散随机变量

若二维随机变量 ( X , Y ) (X, Y) (X,Y)的取值只有有限多对或可列无穷多对,则称 ( X , Y ) (X, Y) (X,Y)为二维离散随机变量。

二维离散随机变量及其联合分布律

设二维离散随机变量 ( X , Y ) (X, Y) (X,Y)所有可能取到的不同值为 ( x i , y j ) (x_i, y_j) (xi,yj) i , j = 1 , 2 , … i, j = 1, 2, \ldots i,j=1,2,,称

p i j = p ( x i , y j ) = P ( X = x i , Y = y j ) p_{ij} = p(x_i, y_j) = P(X = x_i, Y = y_j) pij=p(xi,yj)=P(X=xi,Y=yj)

( X , Y ) (X, Y) (X,Y)的联合概率函数或联合分布律,简称为 ( X , Y ) (X, Y) (X,Y)的概率函数或分布律。

  • 二维离散随机变量:如果二维随机变量 ( X , Y ) (X, Y) (X,Y)的取值只有有限多对或可列无穷多对,则称其为二维离散随机变量。
  • 联合概率函数 p i j p_{ij} pij:表示随机变量 X X X取值为 x i x_i xi且随机变量 Y Y Y取值为 y j y_j yj的概率。
  • 联合分布律:所有可能的 ( x i , y j ) (x_i, y_j) (xi,yj)对应的概率 p i j p_{ij} pij构成了二维离散随机变量 ( X , Y ) (X, Y) (X,Y)的联合分布律。

设随机变量 X X X可以取值 x 1 , x 2 , … , x m x_1, x_2, \ldots, x_m x1,x2,,xm,而随机变量 Y Y Y可以取值 y 1 , y 2 , … , y n y_1, y_2, \ldots, y_n y1,y2,,yn。那么, X X X Y Y Y的联合分布律可以通过以下方式表示:

( X , Y ) (X, Y) (X,Y) Y = y 1 Y = y_1 Y=y1 Y = y 2 Y = y_2 Y=y2 ⋯ \cdots Y = y j Y = y_j Y=yj ⋯ \cdots Y = y n Y = y_n Y=yn
X = x 1 X = x_1 X=x1 p 11 p_{11} p11 p 12 p_{12} p12 ⋯ \cdots p 1 j p_{1j} p1j ⋯ \cdots p 1 n p_{1n} p1n
X = x 2 X = x_2 X=x2 p 21 p_{21} p21 p 22 p_{22} p22 ⋯ \cdots p 2 j p_{2j} p2j ⋯ \cdots p 2 n p_{2n} p2n
⋮ \vdots ⋮ \vdots ⋮ \vdots ⋱ \ddots ⋮ \vdots ⋱ \ddots ⋮ \vdots
X = x i X = x_i X=xi p i 1 p_{i1} pi1 p i 2 p_{i2} pi2 ⋯ \cdots p i j p_{ij} pij ⋯ \cdots p i n p_{in} pin
⋮ \vdots ⋮ \vdots ⋮ \vdots ⋱ \ddots ⋮ \vdots ⋱ \ddots ⋮ \vdots
X = x m X = x_m X=xm p m 1 p_{m1} pm1 p m 2 p_{m2} pm2 ⋯ \cdots p m j p_{mj} pmj ⋯ \cdots p m n p_{mn} pmn

在这个表中:

  • 每个元素 p i j p_{ij} pij表示 X = x i X = x_i X=xi Y = y j Y = y_j Y=yj同时发生的概率。
  • 所有 p i j p_{ij} pij值加起来等于 1,因为它们代表了所有可能事件的概率总和。

二维连续型随机变量及其联合概率密度函数

( X , Y ) (X, Y) (X,Y)是二维随机变量, F ( x , y ) F(x, y) F(x,y)是其联合分布函数。若存在非负二元函数 p ( x , y ) p(x, y) p(x,y),使得对于任意的实数 x x x y y y,有

F ( x , y ) = ∫ − ∞ x ∫ − ∞ y f ( u , v )   d u   d v , F(x, y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) \, {\rm d}u \, {\rm d}v, F(x,y)=xyf(u,v)dudv,

则称 ( X , Y ) (X, Y) (X,Y)为二维连续型随机变量,称 p ( x , y ) p(x, y) p(x,y) ( X , Y ) (X, Y) (X,Y)的联合概率密度函数,简称为概率密度。

  • 联合分布函数 F ( x , y ) F(x, y) F(x,y)描述了随机变量 X X X Y Y Y同时小于等于 x x x y y y的概率。
  • 联合概率密度函数 p ( x , y ) p(x, y) p(x,y)是一个非负二元函数,通过积分可以得到联合分布函数 F ( x , y ) F(x, y) F(x,y)
  • 二维连续型随机变量:如果存在这样的联合概率密度函数 p ( x , y ) p(x, y) p(x,y),则称 ( X , Y ) (X, Y) (X,Y)为二维连续型随机变量。

在这里插入图片描述
在这里插入图片描述

n n n维随机变量

X 1 , X 2 , … , X n X_1, X_2, \ldots, X_n X1,X2,,Xn是定义在同一样本空间 Ω \varOmega Ω上的 n n n个随机变量,称由它们组成的向量 ( X 1 , X 2 , … , X n ) (X_1, X_2, \ldots, X_n) (X1,X2,,Xn) n n n维随机变量,亦称为 n n n维随机向量,其中称 X i X_i Xi 1 ≤ i ≤ n 1 \leq i \leq n 1in)是 n n n维随机向量的第 i i i个分量。

  • n n n维随机变量:由 n n n个随机变量 X 1 , X 2 , … , X n X_1, X_2, \ldots, X_n X1,X2,,Xn组成的向量。
  • n n n维随机向量:与 n n n维随机变量同义,表示一个包含 n n n个随机变量的向量。
  • 分量:每个随机变量 X i X_i Xi 1 ≤ i ≤ n 1 \leq i \leq n 1in)是 n n n维随机向量的一个组成部分。

相关文章:

  • P9420 [蓝桥杯 2023 国 B] 双子数--最高效的质数筛【埃拉托斯特尼筛法】
  • 【uniapp】在UniApp中实现持久化存储:安卓--导出数据为jsontxt
  • 【全干货】cocos简短demo制作-三消类游戏
  • 测试的BUG分析
  • 第二十九:5.7.【$subscribe】侦听数据
  • SpringBoot集成easy-captcha图片验证码框架
  • 《Somewhat Practical Fully Homomorphic Encryption》笔记 (BFV 源于这篇文章)
  • 前端Javascrip后端Net6前后分离文件上传案例(完整源代码)下载
  • 2025 最新版鸿蒙 HarmonyOS 开发工具安装使用指南
  • Go入门之文件
  • 华为AP 4050DN-HD的FIT AP模式改为FAT AP,家用FAT基本配置
  • 练习题:57
  • JDBC 进阶(未完结)
  • C# 确保程序只有一个实例运行
  • 如何确保邮件内容符合不同地区用户的文化习惯
  • 原子性(Atomicity)和一致性(Consistency)的区别?
  • 【备份】php项目处理跨域请求踩坑
  • 【JavaSE-2】数据类型与变量
  • Jmeter接口自动化测试读取用例
  • 快速理解Spring 和 Spring Boot 的核心区别
  • 一个留美学生的思想转向——裘毓麐的《游美闻见录》及其他
  • 湖南慈利一村干部用AI生成通知并擅自发布,乡纪委立案
  • 江苏省委组织部副部长高颜已任南京市委常委、组织部部长
  • 租车订单时隔7年从花呗免密扣费?“GoFun出行”引质疑
  • 乌克兰谈判代表团由12人组成,乌防长率领
  • 澎湃·镜相第二届非虚构写作大赛初选入围名单公示