改进的遗传算法优化的BP神经网络用于电厂数据的异常检测和故障诊断
基于MATLAB的改进遗传算法优化BP神经网络在电厂数据异常检测与故障诊断中的实现
一、系统架构设计
二、关键技术创新
1. 改进遗传算法设计
% 自适应遗传算法参数设置
options = optimoptions('ga',...'PopulationSize',50,...'MaxGenerations',100,...'CrossoverFcn',{@crossoverarithmetic,0.8},...'MutationFcn',{@mutationadaptfeasible,0.1},...'SelectionFcn',{@selectiontournament,2});% 混合编码策略(实数+二进制)
chromosome = [real_part; binary_part]; % 前10位权重,后5位网络结构
2. BP神经网络优化
% 动态网络结构设计
hiddenLayerSize = round(0.4*inputnum + 0.6*outputnum) + 2;% Leaky ReLU激活函数
net.layers{1}.transferFcn = @(x) max(0.01*x, x);% Adam优化器改进
net.trainParam.epochs = 500;
net.trainParam.goal = 1e-5;
net.trainParam.lr = 0.001;
三、MATLAB实现流程
1. 数据预处理
% 加载电厂数据
load('plant_data.mat'); % 包含振动、温度等时序数据% 数据归一化
[inputn,inputps] = mapminmax(X',0,1);
[outputn,outputps] = mapminmax(T',0,1);% 滑动平均去噪
window_size = 5;
inputn = movmean(inputn',window_size)';
2. 遗传算法优化
% 定义适应度函数
fitnessFcn = @(weights) ga_fitness(weights,net,inputn,outputn);% 运行遗传算法
[best_weights,fitness] = ga(fitnessFcn, numWeights, [], [], [], [], lb, ub, [], options);% 解码最优权重
[net,best_net] = decode_weights(best_weights,net);
3. 模型训练与测试
% 训练网络
net = train(net,inputn,outputn);% 测试集评估
predicted = sim(net,test_input');
accuracy = sum(predicted == test_target)/numel(test_target);
四、核心代码解析
1. 适应度函数
function error = ga_fitness(weights,net,input,output)% 权重解码[w1,b1,w2,b2] = decode_weights(weights,net);% 网络参数更新net.IW{1,1} = w1;net.LW{2,1} = w2;net.b{1} = b1;net.b{2} = b2;% 计算均方误差outputs = sim(net,input);error = mean((outputs-output).^2);
end
2. 精英保留策略
% 选择操作
parents = tournament_selection(population,fitness);% 交叉操作
offspring = arithmetic_crossover(parents);% 变异操作
mutated = adaptive_mutation(offspring);
推荐代码 改进的遗传算法优化的BP神经网络用于电厂数据的异常检测和故障诊断 www.youwenfan.com/contentcsi/46139.html
五、完整MATLAB代码框架
%% 主程序
clear; clc;
load('plant_data.mat');% 数据预处理
[inputn,inputps] = mapminmax(X',0,1);
[outputn,outputps] = mapminmax(T',0,1);% 网络初始化
net = feedforwardnet([15 10]);
net.trainParam.epochs = 500;% 遗传算法优化
options = optimoptions('ga',...'PopulationSize',50,...'MaxGenerations',100,...'CrossoverFcn',{@crossoverarithmetic,0.8},...'MutationFcn',{@mutationadaptfeasible,0.1});[best_weights,fitness] = ga(@(w)ga_fitness(w,net,inputn,outputn),25, [], [], [], [], lb, ub, [], options);% 模型部署
deploy_model(best_weights,net);