当前位置: 首页 > news >正文

Redis高可用方案:主从复制、哨兵与集群

1、Redis三种模式概述

Redis群集有三种模式,分别是主从同步/复制、哨兵模式、Cluster,下面会讲解一下三种模式的工作方式,以及如何搭建cluster群集。

  • 主从复制:主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。 缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。

  • 哨兵:在主从复制的基础上,哨兵实现了自动化的故障恢复。 缺陷:写操作无法负载均衡;存储能力受到单机的限制;哨兵无法对从节点进行自动故障转移,在读写分离场景下,从节点故障会导致读服务不可用,需要对从节点做额外的监控、切换操作。

  • 集群:通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。

2、Redis主从复制

主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(Master),后者称为从节点(Slave);数据的复制是单向的,只能由主节点到从节点。

默认情况下,每台Redis服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点。

2.1 主从复制的作用

  • 数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。

  • 故障恢复:当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。

  • 负载均衡:在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。

  • 高可用基石:除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础。

2.2 主从复制的流程

(1)若启动一个Slave机器进程,则它会向Master机器发送一个“sync command”命令,请求同步连接。                                                                                                                                        (2)无论是第一次连接还是重新连接,Master机器都会启动一个后台进程,将数据快照保存到数据文件中(执行rdb操作),同时Master还会记录修改数据的所有命令并缓存在数据文件中。 (3)后台进程完成缓存操作之后,Master机器就会向Slave机器发送数据文件,Slave端机器将数据文件保存到硬盘上,然后将其加载到内存中,接着Master机器就会将修改数据的所有操作一并发送给Slave端机器。若Slave出现故障导致宕机,则恢复正常后会自动重新连接。                     (4)Master机器收到Slave端机器的连接后,将其完整的数据文件发送给Slave端机器,如果Mater同时收到多个Slave发来的同步请求,则Master会在后台启动一个进程以保存数据文件,然后将其发送给所有的Slave端机器,确保所有的Slave端机器都正常。

2.3 搭建Redis主从复制

1、搭建Redis主从复制Master节点: 192.168.10.3
Slave1节点: 192.168.10.4
Slave2节点: 192.168.10.5systemctl stop firewalld
setenforce 02、安装 Redis
wget -p /opt http://download.redis.io/releases/redis-5.0.7.tar.gz
cd /opt/redis-5.0.7/   #下载安装包
yum install -y gcc gcc-c++ maketar zxvf redis-5.0.7.tar.gz -C /opt/make PREFIX=/usr/local/redis install   #安装到指定目录cd /opt/redis-5.0.7/utils
./install_server.sh     #再运行服务安装脚本
......
Please select the redis executable path [/usr/local/bin/redis-server] /usr/local/redis/bin/redis-server  	ln -s /usr/local/redis/bin/* /usr/local/bin/3、修改master配置文件(master节点操作)
vim /etc/redis/6379.conf
bind 0.0.0.0						#70行,修改监听地址为0.0.0.0
daemonize yes						#137行,开启守护进程
logfile /var/log/redis_6379.log		#172行,指定日志文件目录
dir /var/lib/redis/6379				#264行,指定工作目录
appendonly yes						#700行,开启AOF持久化功能/etc/init.d/redis_6379 restart4、修改 Redis 配置文件(Slave节点操作)
vim /etc/redis/6379.conf
bind 0.0.0.0						#70行,修改监听地址为0.0.0.0
daemonize yes						#137行,开启守护进程
logfile /var/log/redis_6379.log		#172行,指定日志文件目录
dir /var/lib/redis/6379				#264行,指定工作目录		#288行,指定要同步的Master节点IP和端口
replicaof 192.168.10.3 6379
appendonly yes						#700行,开启AOF持久化功能/etc/init.d/redis_6379 restart5、验证主从效果
在Master节点上看日志:
tail -f /var/log/redis_6379.log 在Master节点上验证从节点:
redis-cli info replication# Replication
role:master
connected_slaves:2
slave0:ip=192.168.10.5,port=6379,state=online,offset=112,lag=1
slave1:ip=192.168.10.4,port=6379,state=online,offset=112,lag=0测试

3、Redis哨兵模式

3.1 Redis哨兵模式

主从切换技术的方法是:当服务器宕机后,需要手动一台从机切换为主机,这需要人工干预,不仅费时费力而且还会造成一段时间内服务不可用。为了解决主从复制的缺点,就有了哨兵机制。

哨兵的核心功能:在主从复制的基础上,哨兵引入了主节点的自动故障转移。

3.2 哨兵模式原理

哨兵(sentinel):是一个分布式系统,用于对主从结构中的每台服务器进行监控,当出现故障时通过投票机制选择新的 Master并将所有slave连接到新的 Master。所以整个运行哨兵的集群的数量不得少于3个节点。

3.3 哨兵模式的作用

  • 监控:哨兵会不断地检查主节点和从节点是否运作正常。

  • 自动故障转移:当主节点不能正常工作时,哨兵会开始自动故障转移操作,它会将失效主节点的其中一个从节点升级为新的主节点,并让其它从节点改为复制新的主节点。

  • 通知(提醒):哨兵可以将故障转移的结果发送给客户端。

哨兵结构由两部分组成,哨兵节点和数据节点:节点,不存储数据。

  • 哨兵节点:哨兵系统由一个或多个哨兵节点组成,哨兵节点是特殊的redis

  • 数据节点:主节点和从节点都是数据节点。

3.4 故障转移机制

1.由哨兵节点定期监控发现主节点是否出现了故障

每个哨兵节点每隔1秒会向主节点、从节点及其它哨兵节点发送一次ping命令做一次心跳检测。如果主节点在一定时间范围内不回复或者是回复一个错误消息,那么这个哨兵就会认为这个主节点主观下线了(单方面的)。当超过半数哨兵节点认为该主节点主观下线了,这样就客观下线了。

2.当主节点出现故障,此时哨兵节点会通过Raft算法(选举算法)实现选举机制共同选举出一个哨兵节点为leader,来负责处理主节点的故障转移和通知。所以整个运行哨兵的集群的数量不得少于3个节点。

3.由leader哨兵节点执行故障转移,过程如下:

  • 将某一个从节点升级为新的主节点,让其它从节点指向新的主节点;

  • 若原主节点恢复也变成从节点,并指向新的主节点;

  • 通知客户端主节点已经更换。

需要特别注意的是,客观下线是主节点才有的概念;如果从节点和哨兵节点发生故障,被哨兵主观下线后,不会再有后续的客观下线和故障转移操作。

3.5 主节点的选举

  1. 过滤掉不健康的(已下线的),没有回复哨兵 ping 响应的从节点。

  2. 选择配置文件中从节点优先级配置最高的。(replica-priority,默认值为100)

  3. 选择复制偏移量最大,也就是复制最完整的从节点。

哨兵的启动依赖于主从模式,所以须把主从模式安装好的情况下再去做哨兵模式

3.6 搭建Redis哨兵模式

1、搭建Redis 哨兵模式 Master节点:192.168.10.3
Slave1节点:192.168.10.4
Slave2节点:192.168.10.5systemctl stop firewalld
setenforce 02、修改 Redis 哨兵模式的配置文件(所有节点操作)vim /opt/redis-5.0.7/sentinel.conf
protected-mode no								#17行,关闭保护模式
port 26379										#21行,Redis哨兵默认的监听端口
daemonize yes									#26行,指定sentinel为后台启动
logfile "/var/log/sentinel.log"					#36行,指定日志存放路径
dir "/var/lib/redis/6379"						#65行,指定数据库存放路径
sentinel monitor mymaster 192.168.10.3 6379 2	#84行,修改 指定该哨兵节点监控
192.168.10.3:6379这个主节点,该主节点的名称是mymaster,最后的2的含义与主节点的故障判定有
关:至少需要2个哨兵节点同意,才能判定主节点故障并进行故障转移
sentinel down-after-milliseconds mymaster 30000	#113行,判定服务器down掉的时间周期,
默认30000毫秒(30秒)
sentinel failover-timeout mymaster 180000		#146行,故障节点的最大超时时间为180000(180秒)3、启动哨兵模式先启master,再启slave
cd /opt/redis-5.0.7/
redis-sentinel sentinel.conf &4、查看哨兵模式
# Sentinel
sentinel_masters:1
sentinel_tilt:0
sentinel_running_scripts:0
sentinel_scripts_queue_length:0
sentinel_simulate_failure_flags:0
master0:name=mymaster,status=ok,address=192.168.10.3:6379,slaves=2,sentinels=35、故障模拟
#查看redis-server进程号:
ps -ef | grep redis#杀死 Master 节点上redis-server的进程号
kill -9 1304			#Master节点上redis-server的进程号验证结果,查看master是否切换

4、Redis群集模式

4.1 Redis群集模式概述

集群,即Redis Cluster,是Redis 3.0开始引入的分布式存储方案。

集群由多个节点(Node)组成,Redis的数据分布在这些节点中。集群中的节点分为主节点和从节点:只有主节点负责读写请求和集群信息的维护;从节点只进行主节点数据和状态信息的复制。

4.2 集群的作用

集群的作用,可以归纳为两点:

(1)数据分区:数据分区(或称数据分片)是集群最核心的功能。 集群将数据分散到多个节点,一方面突破了Redis单机内存大小的限制,存储容量大大增加;另一方面每个主节点都可以对外提供读服务和写服务,大大提高了集群的响应能力。 Redis单机内存大小受限问题,在介绍持久化和主从复制时都有提及;例如,如果单机内存太大,bgsave和bgrewriteaof的fork操作可能导致主进程阻塞,主从环境下主机切换时可能导致从节点长时间无法提供服务,全量复制阶段主节点的复制缓冲区可能溢出。

(2)高可用:集群支持主从复制和主节点的自动故障转移(与哨兵类似);当任一节点发生故障时,集群仍然可以对外提供服务。

4.3 Redis集群的数据分片

Redis集群引入了哈希槽的概念 Redis集群有16384个哈希槽(编号0-16383) 集群的每个节点负责一部分哈希槽 每个Key通过CRC16校验后对16384取余来决定放置哪个哈希槽,通过这个值,去找到对应的插槽所对应的节点,然后直接自动跳转到这个对应的节点上进行存取操作

#以3个节点组成的集群为例:

  • 节点A包含0到5460号哈希槽

  • 节点B包含5461到10922号哈希槽

  • 节点C包含10923到16383号哈希槽

#Redis集群的主从复制模型 集群中具有A、B、C三个节点,如果节点B失败了,整个集群就会因缺少5461-10922这个范围的槽而不可以用。 为每个节点添加一个从节点A1、B1、C1整个集群便有三个Master节点和三个slave节点组成,在节点B失败后,集群选举B1位为的主节点继续服务。当B和B1都失败后,集群将不可用。

4.4 搭建Redis 群集

1、搭建Redis 群集模式 ----------------------------------------
redis的集群一般需要6个节点,3主3从。方便起见,这里所有节点在同一台服务器上模拟:
以端口号进行区分:3个主节点端口号:6001/6002/6003,对应的从节点端口号:6004/6005/6006。cd /etc/redis/
mkdir -p redis-cluster/redis600{1..6}for i in {1..6}
do
cp /opt/redis-5.0.7/redis.conf /etc/redis/redis-cluster/redis600$i
cp /opt/redis-5.0.7/src/redis-cli /opt/redis-5.0.7/src/redis-server /etc/redis/redis-cluster/redis600$i
done2、开启集群功能
#其他5个文件夹的配置文件以此类推修改,注意6个端口都要不一样。
cd /etc/redis/redis-cluster/redis6001
vim redis.conf
#bind 127.0.0.1							#69行,注释掉bind 项,默认监听所有网卡
protected-mode no						#88行,修改,关闭保护模式
port 6001								#92行,修改,redis监听端口,
daemonize yes							#136行,开启守护进程,以独立进程启动
cluster-enabled yes						#832行,取消注释,开启群集功能
cluster-config-file nodes-6001.conf		#840行,取消注释,群集名称文件设置
cluster-node-timeout 15000				#846行,取消注释群集超时时间设置
appendonly yes							#700行,修改,开启AOF持久化3、启动redis节点
分别进入那六个文件夹,执行命令:redis-server redis.conf ,来启动redis节点
cd /etc/redis/redis-cluster/redis6001
redis-server redis.conffor d in {1..6}
do
cd /etc/redis/redis-cluster/redis600$d
redis-server redis.conf
doneps -ef | grep redis4、动集群
redis-cli --cluster create 127.0.0.1:6001 127.0.0.1:6002 127.0.0.1:6003 127.0.0.1:6004 127.0.0.1:6005 127.0.0.1:6006 --cluster-replicas 15、测试集群
redis-cli -p 6001 -c					#加-c参数,节点之间就可以互相跳转
127.0.0.1:6001> cluster slots			#查看节点的哈希槽编号范围设置数据

设置数据,根据key类型切换主节点

http://www.dtcms.com/a/395919.html

相关文章:

  • STM32_03_库函数
  • SGP30气体传感器详解 (STM32)
  • stm32 BootLoader之检查栈顶地址是否合法(否则无法跳转到APP程序)
  • PyTorch 神经网络工具箱学习总结
  • 容器化 Spring Boot 应用程序
  • python 打包单个文件
  • Python自学21 - Python处理图像
  • 比特浏览器的IP适配性
  • LLHTTP测试
  • 2. 基于IniRealm的方式
  • 第三十四天:矩阵转置
  • MySQL执行计划:如何发现隐藏的性能瓶颈?
  • embedding多模态模型
  • ⚡ GitHub 热榜速报 | 2025 年 09 月 第 3 周
  • Synchronized的实现原理:深入理解Java线程同步机制
  • 初识C++、其中的引用、类(class)和结构体(struct)
  • Qt之常用控件之QWidget(四)
  • Pod生命周期
  • 【课堂笔记】复变函数-3
  • 深度学习-自然语言处理-序列模型与文本预处理
  • 【C语言】迭代与递归:两种阶乘实现方式的深度分析
  • CLIP多模态模型
  • 快手前端三面(准备一)
  • 前端-JS基础-day1
  • 【开题答辩全过程】以 J2EE在电信行业的应用研究为例,包含答辩的问题和答案
  • C++ QT Json数据的解析
  • RAG——动态护栏
  • Spring Boot 全局鉴权认证简单实现方案
  • 【靶场】webshop渗透攻击
  • 深入浅出现代GPU架构:核心类型、精度模式与选择