【课堂笔记】复变函数-2
文章目录
- 复值函数
- 可微性
- 微分算子
- 全纯函数(Holomorphic function)
- 引理
- 保角矩阵
- 定理
复值函数
可微性
设U⊂CU \subset \mathbb{C}U⊂C是开集,一个复值函数(complex valued function)是映射f:U→Cf:U \to \mathbb{C}f:U→C。由于C≃R2\mathbb{C} \simeq \mathbb{R}^2C≃R2,我们可以将复值函数看为f:R2→R2f: \mathbb{R}^2 \to \mathbb{R}^2f:R2→R2
z=x+iy,f((x,y))=u(x,y)+iv(x,y)z = x+iy, f((x, y)) = u(x, y) + iv(x, y) z=x+iy,f((x,y))=u(x,y)+iv(x,y)
称fff是可微的(differentiable),当u,vu, vu,v是可微的。特别的,存在偏导∂u∂x(x,y),∂u∂y,∂v∂x,∂v∂y\frac{\partial u}{\partial x}(x, y), \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}∂x∂u(x,y),∂y∂u,∂x∂v,∂y∂v
对任意z=x+iy∈Uz = x + iy \in Uz=x+iy∈U,定义
∂f∂x(z)=∂u∂x(z)+i∂v∂x(z)∂f∂y(z)=∂u∂y(z)+i∂v∂y(z)\frac{\partial f}{\partial x}(z) = \frac{\partial u}{\partial x}(z) + i\frac{\partial v}{\partial x}(z) \\ \frac{\partial f}{\partial y}(z) = \frac{\partial u}{\partial y}(z) + i\frac{\partial v}{\partial y}(z) ∂x∂f(z)=∂x∂u(z)+i∂x∂v(z)∂y∂f(z)=∂y∂u(z)+i∂y∂v(z)
微分算子
设U∈CU \in \mathbb{C}U∈C是开集,我们形式地定义微分算子为形如gdx+hdygdx + hdygdx+hdy,这里g,h:U→Cg, h: U \to \mathbb{C}g,h:U→C是复值函数。
设f:U→Cf: U \to \mathbb{C}f:U→C是可微的,定义:
df=∂f∂xdx+∂f∂ydydf = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy df=∂x∂fdx+∂y∂fdy
容易得到以下性质:
d(f+g)=df+dgd(fg)=gdf+fdg(Leibniz rule)d(f+g) = df + dg \\ d(fg) = g\ df + f\ dg \ \ (\text{Leibniz rule}) d(f+g)=df+dgd(fg)=g df+f dg (Leibniz rule)
z:C→C,z‾:C→Cz: \mathbb{C} \to \mathbb{C}, \overline{z}:\mathbb{C} \to \mathbb{C}z:C→C,z:C→C,
⇒dz=dx+idy,dz‾=dx−idy\Rightarrow dz = dx + idy, d\overline{z} = dx - idy⇒dz=dx+idy,dz=dx−idy
⇒dx=12(dz+dz‾),dy=12i(dz−dz‾)\Rightarrow dx = \frac{1}{2}(dz + d\overline{z}), dy = \frac{1}{2i}(dz - d\overline{z})⇒dx=21(dz+dz),dy=2i1(dz−dz)
⇒df=12(∂f∂x−i∂f∂y)dz+12(∂f∂x+i∂f∂y)dz‾\Rightarrow df = \frac{1}{2}(\frac{\partial f}{\partial x} - i\frac{\partial f}{\partial y})dz + \frac{1}{2}(\frac{\partial f}{\partial x} + i\frac{\partial f}{\partial y})d\overline{z}⇒df=21(∂x∂f−i∂y∂f)dz+21(∂x∂f+i∂y∂f)dz
令∂f∂z:=12(∂f∂x−i∂f∂y)\frac{\partial f}{\partial z} := \frac{1}{2}(\frac{\partial f}{\partial x} - i\frac{\partial f}{\partial y})∂z∂f:=21(∂x∂f−i∂y∂f),∂f∂z‾=12(∂f∂x+i∂f∂y)\frac{\partial f}{\partial \overline{z}} = \frac{1}{2}(\frac{\partial f}{\partial x} + i\frac{\partial f}{\partial y})∂z∂f=21(∂x∂f+i∂y∂f),则df=∂f∂zdz+∂f∂z‾dz‾df = \frac{\partial f}{\partial z}dz + \frac{\partial f}{\partial \overline{z}} d\overline{z}df=∂z∂fdz+∂z∂fdz。
记∂f=∂f∂zdz,∂‾f=∂f∂z‾dz‾\partial f = \frac{\partial f}{\partial z}dz, \overline{\partial}f = \frac{\partial f}{\partial \overline{z}} d\overline{z}∂f=∂z∂fdz,∂f=∂z∂fdz,⇒df=∂f+∂‾f\Rightarrow df = \partial f + \overline{\partial} f⇒df=∂f+∂f
【注意,这些都是直接定义的符号】
全纯函数(Holomorphic function)
设U⊂CU \subset \mathbb{C}U⊂C,f:U→Cf: U \to \mathbb{C}f:U→C,z∈Cz \in \mathbb{C}z∈C。
称fff是复可微的,当limu→zf(w)−f(z)w−z=f′(z)\underset{u \to z}{\text{lim}}\frac{f(w) - f(z)}{w-z}=f'(z)u→zlimw−zf(w)−f(z)=f′(z)存在。
从R2\mathbb{R}^2R2视角看,若f:R2→R2f:\mathbb{R}^2 \to \mathbb{R}^2f:R2→R2是R\mathbb{R}R线性的,则fff是复可微的,当且仅当∃a∈C,f(z)=az\exist a \in \mathbb{C}, f(z) = az∃a∈C,f(z)=az
设U⊂CU \subset \mathbb{C}U⊂C,f:U→Cf:U \to \mathbb{C}f:U→C被称为全纯的(holomorphic),如果fff对任意z∈Uz \in Uz∈U都是复可微的。
引理
设U⊂CU \subset \mathbb{C}U⊂C是开集,z∈U,f:U→Cz \in U, f:U \to \mathbb{C}z∈U,f:U→C,则fff在点zzz处是复可微的,当且仅当fff是实可微的,且满足下列Cauchy-Riemann等式(简称C-R等式):
∂f∂z‾(z)=0\frac{\partial f}{\partial\overline{z}}(z)=0 ∂z∂f(z)=0
注意,实可微可定义为f:R2→R2f:\mathbb{R}^2 \to \mathbb{R}^2f:R2→R2,∃A∈M2×2(R)\exist A\in M_{2\times 2}(\mathbb{R})∃A∈M2×2(R),f=Az+o(∣z∣)f = Az + o(|z|)f=Az+o(∣z∣)
证明:"⇐\Leftarrow⇐"假设fff是实可微且满足C-R等式,则可以写出
f(w)−f(z)=A(w−z)+o(∣w−z∣)f(w) - f(z) = A(w-z) + o(|w-z|) f(w)−f(z)=A(w−z)+o(∣w−z∣)
这里AAA是实2×22\times 22×2的矩阵。
在坐标z=x+iy,f=u+ivz = x+iy, f=u+ivz=x+iy,f=u+iv表示下
A=(∂u∂x(z)∂u∂y(z)∂v∂x(z)∂v∂y(z))A = \begin{pmatrix} \frac{\partial u}{\partial x}(z) & \frac{\partial u}{\partial y}(z)\\ \frac{\partial v}{\partial x}(z) & \frac{\partial v}{\partial y}(z) \end{pmatrix} A=(∂x∂u(z)∂x∂v(z)∂y∂u(z)∂y∂v(z))
C-R等式说明
∂f∂z‾(z)=0⇔{∂u∂x(z)=∂v∂y(z)=:b∂u∂y(z)=−∂v∂x(z)=:c\frac{\partial f}{\partial\overline{z}}(z)=0 \Leftrightarrow \left\{\begin{matrix} \frac{\partial u}{\partial x}(z)= \frac{\partial v}{\partial y}(z) =: b\\ \frac{\partial u}{\partial y}(z)= -\frac{\partial v}{\partial x}(z) =: c \end{matrix}\right. ∂z∂f(z)=0⇔{∂x∂u(z)=∂y∂v(z)=:b∂y∂u(z)=−∂x∂v(z)=:c
我们记a=b+ci∈Ca = b + ci \in \mathbb{C}a=b+ci∈C,则A(z)=azA(z) = azA(z)=az(易验证)
“⇒\Rightarrow⇒”这个方向易证
保角矩阵
设A∈M2×2(R)A \in M_{2 \times 2}(\mathbb{R})A∈M2×2(R)是个矩阵,我们可以将它看作R2→R2\mathbb{R}^2 \to \mathbb{R}^2R2→R2的映射。
向量v=(x1,y1),w=(x2,v2)v = (x_1, y_1), w = (x_2, v_2)v=(x1,y1),w=(x2,v2),内积定义为<v,w>=x1x2+y1y2\left<v, w\right> = x_1x_2+y_1y_2⟨v,w⟩=x1x2+y1y2
对于C≃R2\mathbb{C} \simeq \mathbb{R}^2C≃R2,z,w∈Cz, w \in \mathbb{C}z,w∈C,<z,w>=Re(zw‾)\left<z, w\right> = \text{Re}(z\overline{w})⟨z,w⟩=Re(zw)
设J:R2→R2,z↦z‾J: \mathbb{R}^2 \to \mathbb{R}^2, z \mapsto \overline{z}J:R2→R2,z↦z是复共轭矩阵,对任意z,w∈Cz, w \in \mathbb{C}z,w∈C,有<Jz,Jw>=<z,w>\left<Jz, Jw\right> = \left<z, w\right>⟨Jz,Jw⟩=⟨z,w⟩
矩阵AAA被称为旋转矩阵(rotation matrix),如果A=(cosθ−sinθsinθcosθ)A = \begin{pmatrix} \cos \theta & -\sin \theta\\ \sin \theta & \cos \theta \end{pmatrix}A=(cosθsinθ−sinθcosθ)。矩阵AAA是旋转矩阵,当且仅当它保内积,且detA>0\text{det}A>0detA>0
矩阵A∈M2×2(R)A \in M_{2 \times 2}(\mathbb{R})A∈M2×2(R)被称为保角的(conformal),如果AAA不改变两个向量z,w∈Cz, w \in \mathbb{C}z,w∈C的夹角,即:
<Az,Aw>∣Az∣⋅∣Aw∣=<z,w>∣z∣⋅∣w∣\frac{\left<Az, Aw\right>}{|Az| \cdot |Aw|}=\frac{\left<z, w\right>}{|z| \cdot |w|} ∣Az∣⋅∣Aw∣⟨Az,Aw⟩=∣z∣⋅∣w∣⟨z,w⟩
保角矩阵一定是可逆的(invertible)。
C\mathbb{C}C中的圆(circle)定义为{z∈C,∣z−z0∣=r},r>0,z0∈C\set{z \in \mathbb{C}, |z-z_0| = r}, r>0, z_0 \in \mathbb{C}{z∈C,∣z−z0∣=r},r>0,z0∈C
定理
设A∈M2×2(R)A \in M_{2\times 2}(\mathbb{R})A∈M2×2(R),满足detA>0\text{det} A > 0detA>0,这样的矩阵被称为保向的(orientation preserving),则下列条件等价:
- AAA是保角的
- AAA由映射z↦az,a∈Cz \mapsto az, a\in \mathbb{C}z↦az,a∈C给出
- AAA将一个圆映射到另一个圆
证明:因为detA>0\text{det}A > 0detA>0,由极分解(polar decomposition),A=RθPA = R_\theta PA=RθP,Rθ\mathbb{R}_\thetaRθ是旋转矩阵,PPP是半正定的。问题可以简化到研究PPP上。
PPP可以进一步正交对角化P=RβDRβ−1,D=(λ100λ2),λ1,λ2>0P = R_\beta D R_\beta^{-1}, D = \begin{pmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{pmatrix}, \lambda_1, \lambda_2 > 0P=RβDRβ−1,D=(λ100λ2),λ1,λ2>0
易知条件(2)等价于λ1=λ2\lambda_1 = \lambda_2λ1=λ2,且(2)⇒(1),(2)⇒(3)(2) \Rightarrow (1), (2) \Rightarrow (3)(2)⇒(1),(2)⇒(3)是显然的。所以我们只需证明(1),(3)⇒λ1=λ2(1), (3) \Rightarrow \lambda_1 = \lambda_2(1),(3)⇒λ1=λ2
对于情形(1),即DDD是保角的,取特殊向量z=1,w=1+iz=1, w=1+iz=1,w=1+i,则<Dz,Dw>∣Dz∣⋅∣Dw∣=<z,w>∣z∣⋅∣w∣<λ1,λ1+λ2i>λ1λ12+λ22=<1,1+i>2\frac{\left<Dz, Dw\right>}{|Dz| \cdot |Dw|}=\frac{\left<z, w\right>}{|z| \cdot |w|} \\ \frac{\left<\lambda_1, \lambda_1+\lambda_2i\right>}{\lambda_1\sqrt{\lambda_1^2+\lambda_2^2}}=\frac{\left<1, 1+i\right>}{\sqrt{2}}∣Dz∣⋅∣Dw∣⟨Dz,Dw⟩=∣z∣⋅∣w∣⟨z,w⟩λ1λ12+λ22⟨λ1,λ1+λ2i⟩=2⟨1,1+i⟩
于是λ1=λ2\lambda_1 = \lambda_2λ1=λ2
对于情形(3),假设DDD将一个圆映射到另一个圆,同样取特殊情况,考虑圆周∂D(0,2)\partial D(0, \sqrt{2})∂D(0,2),它的像也是个圆周,且D(0)=0D(0)=0D(0)=0(即像的圆心是原点)
考虑两个复数2,1+i∈∂D(0,2)\sqrt{2}, 1+i \in \partial D(0, \sqrt{2})2,1+i∈∂D(0,2),则D(2)=λ12,D(1+i)=λ1+λ2iD(\sqrt{2}) = \lambda_1\sqrt{2}, D(1+i) = \lambda_1 + \lambda_2 iD(2)=λ12,D(1+i)=λ1+λ2i,且有∣D(2)∣=∣D(1+i)∣|D(\sqrt{2})| = |D(1+i)|∣D(2)∣=∣D(1+i)∣,于是解得λ1=λ2\lambda_1 = \lambda_2λ1=λ2