当前位置: 首页 > news >正文

第四章:AI集成与机器学习

4.1 AI模型集成

模型加载与管理

import ai.models as models
import ai.config as config# 配置AI服务
config.set_provider("openai", {"api_key": "your-api-key","base_url": "https://api.openai.com/v1"
})config.set_provider("huggingface", {"token": "your-hf-token","cache_dir": "./models"
})# 加载不同类型的模型
class ModelManager {func __init__() {self.models = {}self.model_configs = {"text_generation": {"openai": "gpt-4","huggingface": "microsoft/DialoGPT-medium"},"text_embedding": {"openai": "text-embedding-ada-002","huggingface": "sentence-transformers/all-MiniLM-L6-v2"},"image_generation": {"openai": "dall-e-3","stability": "stable-diffusion-xl"}}}func load_model(model_type: str, provider: str = "openai") -> any {model_key = f"{model_type}_{provider}"if model_key in self.models {return self.models[model_key]}model_name = self.model_configs[model_type][provider]model = models.load(model_name, provider=provider)self.models[model_key] = modelreturn model}func unload_model(model_type: str, provider: str = "openai") {model_key = f"{model_type}_{provider}"if model_key in self.models {self.models[model_key].unload()del self.models[model_key]}func list_loaded_models() -> list[str] {return list(self.models.keys())}
}# 使用模型管理器
model_manager = ModelManager()# 加载文本生成模型
text_model = model_manager.load_model("text_generation", "openai")
embedding_model = model_manager.load_model("text_embedding", "huggingface")

模型推理接口

# 统一的推理接口
class AIInference {func __init__(model_manager: ModelManager) {self.model_manager = model_manager}func generate_text(prompt: str, max_tokens: int = 100,temperature: float = 0.7,provider: str = "openai") -> str {model = self.model_manager.load_model("text_generation", provider)response = model.generate(prompt=prompt,max_tokens=max_tokens,temperature=temperature)return response.text}func get_embeddings(texts: list[str],provider: str = "openai") -> list[list[float]] {model = self.model_manager.load_model("text_embedding", provider)embeddings = []for text in texts {embedding = model.encode(text)embeddings.append(embedding.tolist())}return embeddings}func generate_image(prompt: str,size: str = "1024x1024",quality: str = "standard",provider: str = "openai") -> str {model = self.model_manager.load_model("image_generation", provider)response = model.generate(prompt=prompt,size=size,quality=quality)return response.url}func analyze_sentiment(text: str,provider: str = "huggingface") -> dict {# 使用预训练的情感分析模型model = models.load("cardiffnlp/twitter-roberta-base-sentiment-latest")result = model.predict(text)return {"label": result.label,"confidence": result.confidence,"scores": result.scores}}
}# 使用推理接口
ai_inference = AIInference(model_manager)# 文本生成示例
response = ai_inference.generate_text("请解释什么是机器学习",max_tokens=200,temperature=0.7
)
print(response)# 文本嵌入示例
texts = ["机器学习", "深度学习", "人工智能"]
embeddings = ai_inference.get_embeddings(texts)
print(f"嵌入维度: {len(embeddings[0])}")# 情感分析示例
sentiment = ai_inference.analyze_sentiment("今天天气真不错!")
print(f"情感: {sentiment['label']}, 置信度: {sentiment['confidence']:.2f}")

4.2 数据处理管道

数据预处理

import ai.data as data
import ai.preprocessing as prepclass DataPipeline {func __init__() {self.steps = []self.fitted_transformers = {}}func add_step(name: str, transformer: callable) -> self {self.steps.append((name, transformer))return self}func fit(X: any, y: any? = null) -> self {current_X = Xfor name, transformer in self.steps {if hasattr(transformer, "fit") {transformer.fit(current_X, y)self.fitted_transformers[name] = transformer}if hasattr(transformer, "transform") {current_X = transformer.transform(current_X)} else {current_X = transformer(current_X)}}return self}func transform(X: any) -> any {current_X = Xfor name, transformer in self.steps {if name in self.fitted_transformers {current_X = self.fitted_transformers[name].transform(current_X)} else {current_X = transformer(current_X)}}return current_X}func fit_transform(X: any, y: any? = null) -> any {return self.fit(X, y).transform(X)}
}# 文本预处理组件
class TextCleaner {func __init__(lowercase: bool = true, remove_punctuation: bool = true) {self.lowercase = lowercaseself.remove_punctuation = remove_punctuation}func __call__(texts: list[str]) -> list[str] {cleaned_texts = []for text in texts {cleaned = textif self.lowercase {cleaned = cleaned.lower()}if self.remove_punctuation {cleaned = re.sub(r'[^\w\s]', '', cleaned)}# 移除多余空格cleaned = re.sub(r'\s+', ' ', cleaned).strip()cleaned_texts.append(cleaned)}return cleaned_texts}
}class TextTokenizer {func __init__(max_length: int = 512, padding: bool = true) {self.max_length = max_lengthself.padding = paddingself.tokenizer = null}func fit(texts: list[str]) {# 构建词汇表vocab = set()for text in texts {words = text.split()vocab.update(words)}self.vocab = {word: i for i, word in enumerate(sorted(vocab))}self.vocab["<PAD>"] = len(self.vocab)self.vocab["<UNK>"] = len(self.vocab)}func transform(texts: list[str]) -> list[list[int]] {tokenized_texts = []for text in texts {words = text.split()tokens = [self.vocab.get(word, self.vocab["<UNK>"]) for word in words]# 截断或填充if len(tokens) > self.max_length {tokens = tokens[:self.max_length]} elif self.padding and len(tokens) < self.max_length {tokens.extend([self.vocab["<PAD>"]] * (self.max_length - len(tokens)))}tokenized_texts.append(tokens)}return tokenized_texts}
}# 使用数据管道
texts = ["Hello, World! This is a test.","Machine Learning is Amazing!!!","AI Script makes everything easier."
]# 构建预处理管道
pipeline = DataPipeline()
pipeline.add_step("clean", TextCleaner())
pipeline.add_step("tokenize", TextTokenizer(max_length=10))# 训练和转换
processed_texts = pipeline.fit_transform(texts)
print(processed_texts)

特征工程

import ai.features as features
import numpy as npclass FeatureExtractor {func __init__() {self.extractors = {}}func add_extractor(name: str, extractor: callable) {self.extractors[name] = extractor}func extract(data: any) -> dict {feature_dict = {}for name, extractor in self.extractors.items() {try {feature_dict[name] = extractor(data)} catch Exception as e {print(f"特征提取器 {name} 失败: {e}")feature_dict[name] = null}}return feature_dict}func extract_batch(data_list: list) -> list[dict] {return [self.extract(data) for data in data_list]}
}# 文本特征提取器
class TextFeatureExtractor(FeatureExtractor) {func __init__() {super().__init__()self._setup_extractors()}func _setup_extractors() {# 基础统计特征self.add_extractor("length", lambda text: len(text))self.add_extractor("word_count", lambda text: len(text.split()))self.add_extractor("sentence_count", lambda text: len(text.split('.')))# 字符特征self.add_extractor("uppercase_ratio", self._uppercase_ratio)self.add_extractor("digit_ratio", self._digit_ratio)self.add_extractor("punctuation_ratio", self._punctuation_ratio)# 语言特征self.add_extractor("avg_word_length", self._avg_word_length)self.add_extractor("unique_word_ratio", self._unique_word_ratio)}func _uppercase_ratio(text: str) -> float {if len(text) == 0 {return 0.0}return sum(1 for c in text if c.isupper()) / len(text)}func _digit_ratio(text: str) -> float {if len(text) == 0 {return 0.0}return sum(1 for c in text if c.isdigit()) / len(text)}func _punctuation_ratio(text: str) -> float {if len(text) == 0 {return 0.0}punctuation = "!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~"return sum(1 for c in text if c in punctuation) / len(text)}func _avg_word_length(text: str) -> float {words = text.split()if len(words) == 0 {return 0.0}return sum(len(word) for word in words) / len(words)}func _unique_word_ratio(text: str) -> float {words = text.split()if len(words) == 0 {return 0.0}return len(set(words)) / len(words)}
}# 使用特征提取器
text_extractor = TextFeatureExtractor()sample_texts = ["Hello, World! This is a test.","MACHINE LEARNING IS AMAZING!!!","AI Script makes everything easier and more efficient."
]features_list = text_extractor.extract_batch(sample_texts)
for i, features in enumerate(features_list) {print(f"文本 {i+1} 特征:")for name, value in features.items() {print(f"  {name}: {value:.3f}")print()
}

4.3 模型训练与评估

机器学习模型训练

import ai.ml as ml
import ai.metrics as metrics
from sklearn.model_selection import train_test_splitclass MLTrainer {func __init__() {self.models = {}self.training_history = {}}func train_classifier(X: any, y: any, model_type: str = "random_forest",test_size: float = 0.2,**kwargs) -> dict {# 分割数据X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=42)# 选择模型model = self._create_model(model_type, **kwargs)# 训练模型print(f"开始训练 {model_type} 模型...")start_time = time.time()model.fit(X_train, y_train)training_time = time.time() - start_timeprint(f"训练完成,耗时: {training_time:.2f}秒")# 评估模型train_pred = model.predict(X_train)test_pred = model.predict(X_test)results = {"model": model,"training_time": training_time,"train_accuracy": metrics.accuracy_score(y_train, train_pred),"test_accuracy": metrics.accuracy_score(y_test, test_pred),"train_f1": metrics.f1_score(y_train, train_pred, average="weighted"),"test_f1": metrics.f1_score(y_test, test_pred, average="weighted"),"confusion_matrix": metrics.confusion_matrix(y_test, test_pred),"classification_report": metrics.classification_report(y_test, test_pred)}# 保存模型和结果model_name = f"{model_type}_{int(time.time())}"self.models[model_name] = modelself.training_history[model_name] = resultsreturn results}func _create_model(model_type: str, **kwargs) {match model_type {"random_forest" => {from sklearn.ensemble import RandomForestClassifierreturn RandomForestClassifier(n_estimators=kwargs.get("n_estimators", 100),max_depth=kwargs.get("max_depth", null),random_state=42)}"svm" => {from sklearn.svm import SVCreturn SVC(kernel=kwargs.get("kernel", "rbf"),C=kwargs.get("C", 1.0),random_state=42)}"logistic_regression" => {from sklearn.linear_model import LogisticRegressionreturn LogisticRegression(max_iter=kwargs.get("max_iter", 1000),random_state=42)}"neural_network" => {from sklearn.neural_network import MLPClassifierreturn MLPClassifier(hidden_layer_sizes=kwargs.get("hidden_layer_sizes", (100,)),max_iter=kwargs.get("max_iter", 500),random_state=42)}_ => {raise ValueError(f"不支持的模型类型: {model_type}")}}}func compare_models(X: any, y: any, model_types: list[str]) -> dict {results = {}for model_type in model_types {print(f"\n训练 {model_type} 模型...")result = self.train_classifier(X, y, model_type)results[model_type] = result}# 比较结果print("\n模型比较结果:")print(f"{'模型':<20} {'训练准确率':<12} {'测试准确率':<12} {'F1分数':<10} {'训练时间':<10}")print("-" * 70)for model_type, result in results.items() {print(f"{model_type:<20} {result['train_accuracy']:<12.3f} {result['test_accuracy']:<12.3f} {result['test_f1']:<10.3f} {result['training_time']:<10.2f}s")}return results}
}# 使用示例
trainer = MLTrainer()# 准备示例数据(文本分类)
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer# 加载数据
categories = ['alt.atheism', 'soc.religion.christian', 'comp.graphics', 'sci.med']
newsgroups_train = fetch_20newsgroups(subset='train', categories=categories)# 特征提取
vectorizer = TfidfVectorizer(max_features=5000, stop_words='english')
X = vectorizer.fit_transform(newsgroups_train.data)
y = newsgroups_train.target# 训练和比较多个模型
model_types = ["random_forest", "svm", "logistic_regression"]
comparison_results = trainer.compare_models(X, y, model_types)

深度学习模型训练

import ai.deep_learning as dl
import torch
import torch.nn as nn
import torch.optim as optimclass DeepLearningTrainer {func __init__(device: str = "auto") {if device == "auto" {self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")} else {self.device = torch.device(device)}print(f"使用设备: {self.device}")}func train_neural_network(model: nn.Module,train_loader: any,val_loader: any,epochs: int = 10,learning_rate: float = 0.001,criterion: any = null,optimizer: any = null) -> dict {# 设置默认损失函数和优化器if criterion is null {criterion = nn.CrossEntropyLoss()}if optimizer is null {optimizer = optim.Adam(model.parameters(), lr=learning_rate)}model.to(self.device)# 训练历史history = {"train_loss": [],"train_accuracy": [],"val_loss": [],"val_accuracy": []}for epoch in range(epochs) {# 训练阶段model.train()train_loss = 0.0train_correct = 0train_total = 0for batch_idx, (data, target) in enumerate(train_loader) {data, target = data.to(self.device), target.to(self.device)optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()train_loss += loss.item()_, predicted = torch.max(output.data, 1)train_total += target.size(0)train_correct += (predicted == target).sum().item()}# 验证阶段model.eval()val_loss = 0.0val_correct = 0val_total = 0with torch.no_grad() {for data, target in val_loader {data, target = data.to(self.device), target.to(self.device)output = model(data)loss = criterion(output, target)val_loss += loss.item()_, predicted = torch.max(output.data, 1)val_total += target.size(0)val_correct += (predicted == target).sum().item()}}# 计算平均损失和准确率avg_train_loss = train_loss / len(train_loader)train_accuracy = 100 * train_correct / train_totalavg_val_loss = val_loss / len(val_loader)val_accuracy = 100 * val_correct / val_total# 记录历史history["train_loss"].append(avg_train_loss)history["train_accuracy"].append(train_accuracy)history["val_loss"].append(avg_val_loss)history["val_accuracy"].append(val_accuracy)print(f"Epoch {epoch+1}/{epochs}:")print(f"  训练损失: {avg_train_loss:.4f}, 训练准确率: {train_accuracy:.2f}%")print(f"  验证损失: {avg_val_loss:.4f}, 验证准确率: {val_accuracy:.2f}%")}return history}
}# 定义一个简单的神经网络
class SimpleNN(nn.Module) {func __init__(input_size: int, hidden_size: int, num_classes: int) {super(SimpleNN, self).__init__()self.fc1 = nn.Linear(input_size, hidden_size)self.relu = nn.ReLU()self.dropout = nn.Dropout(0.2)self.fc2 = nn.Linear(hidden_size, num_classes)}func forward(x) {x = self.fc1(x)x = self.relu(x)x = self.dropout(x)x = self.fc2(x)return x}
}# 使用深度学习训练器
dl_trainer = DeepLearningTrainer()# 创建模型
model = SimpleNN(input_size=784, hidden_size=128, num_classes=10)# 假设我们有训练和验证数据加载器
# train_loader = ...
# val_loader = ...# 训练模型
# history = dl_trainer.train_neural_network(
#     model=model,
#     train_loader=train_loader,
#     val_loader=val_loader,
#     epochs=20,
#     learning_rate=0.001
# )

4.4 模型部署与推理

模型序列化与加载

import ai.deployment as deploy
import pickle
import joblib
import torchclass ModelSerializer {func save_sklearn_model(model: any, filepath: str) {"""保存scikit-learn模型"""joblib.dump(model, filepath)print(f"模型已保存到: {filepath}")}func load_sklearn_model(filepath: str) -> any {"""加载scikit-learn模型"""model = joblib.load(filepath)print(f"模型已从 {filepath} 加载")return model}func save_pytorch_model(model: nn.Module, filepath: str) {"""保存PyTorch模型"""torch.save(model.state_dict(), filepath)print(f"PyTorch模型已保存到: {filepath}")}func load_pytorch_model(model_class: type, filepath: str, **kwargs) -> nn.Module {"""加载PyTorch模型"""model = model_class(**kwargs)model.load_state_dict(torch.load(filepath))model.eval()print(f"PyTorch模型已从 {filepath} 加载")return model}func save_model_metadata(metadata: dict, filepath: str) {"""保存模型元数据"""with open(filepath, "w") as f {json.dump(metadata, f, indent=2)}func load_model_metadata(filepath: str) -> dict {"""加载模型元数据"""with open(filepath, "r") as f {return json.load(f)}}
}# 模型部署服务
class ModelService {func __init__() {self.models = {}self.serializer = ModelSerializer()}func register_model(name: str, model: any, preprocessor: callable? = null,postprocessor: callable? = null) {"""注册模型到服务中"""self.models[name] = {"model": model,"preprocessor": preprocessor,"postprocessor": postprocessor,"created_at": time.time(),"prediction_count": 0}print(f"模型 '{name}' 已注册")}func predict(name: str, input_data: any) -> any {"""使用指定模型进行预测"""if name not in self.models {raise ValueError(f"模型 '{name}' 未找到")}model_info = self.models[name]model = model_info["model"]# 预处理if model_info["preprocessor"] is not null {input_data = model_info["preprocessor"](input_data)}# 预测if hasattr(model, "predict") {prediction = model.predict(input_data)} elif hasattr(model, "forward") {with torch.no_grad() {prediction = model(input_data)}} else {prediction = model(input_data)}# 后处理if model_info["postprocessor"] is not null {prediction = model_info["postprocessor"](prediction)}# 更新统计信息model_info["prediction_count"] += 1return prediction}func get_model_info(name: str) -> dict {"""获取模型信息"""if name not in self.models {raise ValueError(f"模型 '{name}' 未找到")}model_info = self.models[name].copy()del model_info["model"]  # 不返回模型对象return model_info}func list_models() -> list[str] {"""列出所有注册的模型"""return list(self.models.keys())}
}# 使用示例
model_service = ModelService()# 注册模型
# 假设我们有一个训练好的模型
# trained_model = ...
# model_service.register_model(
#     name="text_classifier",
#     model=trained_model,
#     preprocessor=lambda x: vectorizer.transform([x]),
#     postprocessor=lambda x: x[0]
# )# 进行预测
# result = model_service.predict("text_classifier", "这是一个测试文本")
# print(f"预测结果: {result}")

API服务部署

import ai.api as api
from flask import Flask, request, jsonifyclass ModelAPI {func __init__(model_service: ModelService) {self.app = Flask(__name__)self.model_service = model_serviceself._setup_routes()}func _setup_routes() {@self.app.route("/health", methods=["GET"])func health_check() {return jsonify({"status": "healthy", "timestamp": time.time()})}@self.app.route("/models", methods=["GET"])func list_models() {models = self.model_service.list_models()return jsonify({"models": models})}@self.app.route("/models/<model_name>/info", methods=["GET"])func get_model_info(model_name) {try {info = self.model_service.get_model_info(model_name)return jsonify(info)} catch ValueError as e {return jsonify({"error": str(e)}), 404}}@self.app.route("/predict/<model_name>", methods=["POST"])func predict(model_name) {try {data = request.get_json()if "input" not in data {return jsonify({"error": "缺少 'input' 字段"}), 400}input_data = data["input"]prediction = self.model_service.predict(model_name, input_data)return jsonify({"prediction": prediction.tolist() if hasattr(prediction, "tolist") else prediction,"model": model_name,"timestamp": time.time()})} catch ValueError as e {return jsonify({"error": str(e)}), 404} catch Exception as e {return jsonify({"error": f"预测失败: {str(e)}"}), 500}}@self.app.route("/batch_predict/<model_name>", methods=["POST"])func batch_predict(model_name) {try {data = request.get_json()if "inputs" not in data {return jsonify({"error": "缺少 'inputs' 字段"}), 400}inputs = data["inputs"]predictions = []for input_data in inputs {prediction = self.model_service.predict(model_name, input_data)predictions.append(prediction.tolist() if hasattr(prediction, "tolist") else prediction)}return jsonify({"predictions": predictions,"model": model_name,"count": len(predictions),"timestamp": time.time()})} catch ValueError as e {return jsonify({"error": str(e)}), 404} catch Exception as e {return jsonify({"error": f"批量预测失败: {str(e)}"}), 500}}}func run(host: str = "0.0.0.0", port: int = 5000, debug: bool = false) {print(f"启动模型API服务,地址: http://{host}:{port}")self.app.run(host=host, port=port, debug=debug)}
}# 部署API服务
api_service = ModelAPI(model_service)# 启动服务
if __name__ == "__main__" {api_service.run(port=8080, debug=true)
}

4.5 模型监控与维护

性能监控

import ai.monitoring as monitoring
import time
import statisticsclass ModelMonitor {func __init__() {self.metrics = {"prediction_times": [],"prediction_counts": {},"error_counts": {},"accuracy_scores": [],"memory_usage": [],"cpu_usage": []}self.start_time = time.time()}func log_prediction(model_name: str, prediction_time: float, success: bool = true,accuracy: float? = null) {# 记录预测时间self.metrics["prediction_times"].append(prediction_time)# 记录预测次数if model_name not in self.metrics["prediction_counts"] {self.metrics["prediction_counts"][model_name] = 0}self.metrics["prediction_counts"][model_name] += 1# 记录错误次数if not success {if model_name not in self.metrics["error_counts"] {self.metrics["error_counts"][model_name] = 0}self.metrics["error_counts"][model_name] += 1}# 记录准确率if accuracy is not null {self.metrics["accuracy_scores"].append(accuracy)}}func log_system_metrics() {import psutil# 记录内存使用率memory_percent = psutil.virtual_memory().percentself.metrics["memory_usage"].append(memory_percent)# 记录CPU使用率cpu_percent = psutil.cpu_percent()self.metrics["cpu_usage"].append(cpu_percent)}func get_performance_summary() -> dict {summary = {"uptime": time.time() - self.start_time,"total_predictions": sum(self.metrics["prediction_counts"].values()),"total_errors": sum(self.metrics["error_counts"].values())}# 预测时间统计if self.metrics["prediction_times"] {times = self.metrics["prediction_times"]summary["prediction_time_stats"] = {"mean": statistics.mean(times),"median": statistics.median(times),"min": min(times),"max": max(times),"std": statistics.stdev(times) if len(times) > 1 else 0}}# 准确率统计if self.metrics["accuracy_scores"] {accuracies = self.metrics["accuracy_scores"]summary["accuracy_stats"] = {"mean": statistics.mean(accuracies),"min": min(accuracies),"max": max(accuracies)}}# 系统资源统计if self.metrics["memory_usage"] {summary["memory_usage_avg"] = statistics.mean(self.metrics["memory_usage"])}if self.metrics["cpu_usage"] {summary["cpu_usage_avg"] = statistics.mean(self.metrics["cpu_usage"])}# 错误率if summary["total_predictions"] > 0 {summary["error_rate"] = summary["total_errors"] / summary["total_predictions"]} else {summary["error_rate"] = 0}return summary}func check_alerts() -> list[str] {alerts = []# 检查错误率summary = self.get_performance_summary()if summary["error_rate"] > 0.1 {alerts.append(f"高错误率警告: {summary['error_rate']:.2%}")}# 检查预测时间if "prediction_time_stats" in summary {avg_time = summary["prediction_time_stats"]["mean"]if avg_time > 5.0 {alerts.append(f"预测时间过长警告: {avg_time:.2f}秒")}}# 检查内存使用if "memory_usage_avg" in summary {if summary["memory_usage_avg"] > 80 {alerts.append(f"内存使用率过高警告: {summary['memory_usage_avg']:.1f}%")}}# 检查CPU使用if "cpu_usage_avg" in summary {if summary["cpu_usage_avg"] > 80 {alerts.append(f"CPU使用率过高警告: {summary['cpu_usage_avg']:.1f}%")}}return alerts}
}# 使用监控器
monitor = ModelMonitor()# 模拟监控数据
for i in range(100) {# 模拟预测prediction_time = random.uniform(0.1, 2.0)success = random.random() > 0.05  # 95%成功率accuracy = random.uniform(0.8, 0.95) if success else nullmonitor.log_prediction("text_classifier", prediction_time, success, accuracy)# 每10次记录系统指标if i % 10 == 0 {monitor.log_system_metrics()}
}# 获取性能摘要
summary = monitor.get_performance_summary()
print("性能摘要:")
for key, value in summary.items() {print(f"  {key}: {value}")
}# 检查警告
alerts = monitor.check_alerts()
if alerts {print("\n警告:")for alert in alerts {print(f"  - {alert}")
} else {print("\n系统运行正常")
}

本章小结

本章详细介绍了AI Script中的AI集成与机器学习功能。通过学习本章,你应该:

  • 掌握AI模型的加载、管理和推理接口
  • 了解数据预处理和特征工程的方法
  • 学会使用AI Script进行机器学习和深度学习模型训练
  • 掌握模型部署和API服务的实现
  • 理解模型监控和维护的重要性

这些AI集成功能使AI Script成为一个强大的AI应用开发平台。


练习题

  1. 实现一个文本情感分析的完整流程,包括数据预处理、模型训练和部署
  2. 创建一个图像分类模型的训练和评估系统
  3. 设计一个模型A/B测试框架来比较不同模型的性能
  4. 实现一个实时模型监控系统,包括性能指标和告警机制

下一章:第五章:自动化脚本开发


文章转载自:

http://gLHu0z79.krkLj.cn
http://gAeUTjzs.krkLj.cn
http://KKKXkwBC.krkLj.cn
http://IkHyg666.krkLj.cn
http://noYO2leu.krkLj.cn
http://Ppb2NczN.krkLj.cn
http://UmIGFCZg.krkLj.cn
http://ZBEM6nrK.krkLj.cn
http://RWJb42CN.krkLj.cn
http://Uswmn70q.krkLj.cn
http://QjwaTcXh.krkLj.cn
http://uNT1femT.krkLj.cn
http://86iD8Ac2.krkLj.cn
http://ZMKybETw.krkLj.cn
http://qbD5SeFu.krkLj.cn
http://ochY7WD3.krkLj.cn
http://UwGiv3v5.krkLj.cn
http://JNLd3g3T.krkLj.cn
http://fl5Dtu5v.krkLj.cn
http://19V2bcBx.krkLj.cn
http://v4d7H1XZ.krkLj.cn
http://zsoZPvrD.krkLj.cn
http://FvwYkXb9.krkLj.cn
http://x0v2kGR9.krkLj.cn
http://PULejltc.krkLj.cn
http://jnJsjS18.krkLj.cn
http://GowUjE8L.krkLj.cn
http://DjZDQHX6.krkLj.cn
http://WmMg4DPf.krkLj.cn
http://8oGaCP48.krkLj.cn
http://www.dtcms.com/a/380307.html

相关文章:

  • Redis面试相关
  • Python获取Windows已安装的所有应用程序列表
  • 计算机视觉(opencv)实战十六——图像像素直方图 与 掩膜
  • SSH登录管理
  • 利用OpenCV进行指纹识别的案例
  • 知识点 | “比选”和“询价”
  • HarmonyOS多媒体开发:音视频播放与录制全解析
  • Linux文件IO——系统IO
  • Class51 深度循环神经网络
  • URLSearchParams
  • 使用 C# 设置 Excel 单元格格式
  • (二) Claude Code接入免费的Gemini-2.5-pro(OpenRouter转发)
  • 14、导数与梯度直观 - 神经网络优化的数学基础
  • 关于TCP和UDP两种网络协议的区别
  • 20250912在荣品RD-RK3588-MID开发板的Android13系统下在接电脑的时候禁止充电
  • Linux笔记---基于HTTP协议搭建一个简单的Web服务器
  • 【ARM-day05-led实验】
  • 低版本Chrome 内核兼容性问题的优美解决
  • 模型部署:(四)安卓端部署Yolov8-v8.2.99实例分割项目全流程记录
  • 使用自定义LLM和Embedding模型部署Vanna:基于RAG的Text-to-SQL生成
  • DataCollatorForCompletionOnlyLM解析(93)
  • 淘宝RecGPT:通过LLM增强推荐
  • Vue3 中使用 DOMPurify 对渲染动态 HTML 进行安全净化处理
  • 比较 iPhone:全面比较 iPhone 17 系列
  • 【Doris】集群介绍
  • 从“能写”到“能干活”:大模型工具调用(Function-Calling)的工程化落地指南
  • golang程序内存泄漏分析方法论
  • Go 语言 MQTT 消息队列学习指导文档
  • 基于数据挖掘技术构建电信5G客户预测模型的研究与应用
  • 【AI】pickle模块常见用途