泛函Φ(u)驻点的方程与边界条件 / 求给定泛函驻点满足的方程及边界条件
题目:
问题11:写出泛函
Φ(u)=∬D\Phi(u)=\iint_{D}Φ(u)=∬Du_{x}{2}+2u_{x}u_{y}+3u_{y}{2}),dxdy+2\int_{ \Gamma}g(x)u,dx$$
的驻点所满足的方程和边界条件,其中 D={(x,y) :0<x<2, 0<y<1}D=\{(x,y)\colon 0<x<2,\,0<y<1\}D={(x,y):0<x<2,0<y<1},Γ={(x,y) :y=1}\Gamma=\{(x,y)\colon y=1\}Γ={(x,y):y=1},且满足边界条件
u∣y=0=u∣x=0=u∣x=2=u∣y=1, 0<x<1=0.u|_{y=0}=u|_{x=0}=u|_{x=2}=u|_{y=1,\,0<x<1}=0.u∣y=0=u∣x=0=u∣x=2=u∣y=1,0<x<1=0.
解题过程:
为了找到泛函 Φ(u)\Phi(u)Φ(u) 的驻点,需要求解其欧拉-拉格朗日方程并推导自然边界条件。泛函中的被积函数为 F=ux2+2uxuy+3uy2F = u_x^2 + 2u_x u_y + 3u_y^2F=ux2+2uxuy+3uy2,由于 FFF 不显含 uuu,欧拉-拉格朗日方程为:
∂F∂u−∂∂x∂F∂ux−∂∂y∂F∂uy=0 \frac{\partial F}{\partial u} - \frac{\partial}{\partial x} \frac{\partial F}{\partial u_x} - \frac{\partial}{\partial y} \frac{\partial F}{\partial u_y} = 0 ∂u∂F−∂x∂∂ux∂F−∂y∂∂uy∂F=0
计算偏导数:
∂F∂ux=2ux+2uy,∂F∂uy=2ux+6uy
\frac{\partial F}{\partial u_x} = 2u_x + 2u_y, \quad \frac{\partial F}{\partial u_y} = 2u_x + 6u_y
∂ux∂F=2ux+2uy,∂uy∂F=2ux+6uy
∂∂x∂F∂ux=2uxx+2uxy,∂∂y∂F∂uy=2uxy+6uyy
\frac{\partial}{\partial x} \frac{\partial F}{\partial u_x} = 2u_{xx} + 2u_{xy}, \quad \frac{\partial}{\partial y} \frac{\partial F}{\partial u_y} = 2u_{xy} + 6u_{yy}
∂x∂∂ux∂F=2uxx+2uxy,∂y∂∂uy∂F=2uxy+6uyy
代入方程:
0−(2uxx+2uxy)−(2uxy+6uyy)=0
0 - (2u_{xx} + 2u_{xy}) - (2u_{xy} + 6u_{yy}) = 0
0−(2uxx+2uxy)−(2uxy+6uyy)=0
简化得:
−2uxx−4uxy−6uyy=0
-2u_{xx} - 4u_{xy} - 6u_{yy} = 0
−2uxx−4uxy−6uyy=0
即:
uxx+2uxy+3uyy=0
u_{xx} + 2u_{xy} + 3u_{yy} = 0
uxx+2uxy+3uyy=0
接下来处理边界条件。给定的边界条件为:
- u=0u = 0u=0 on y=0y=0y=0 (底部边界)
- u=0u = 0u=0 on x=0x=0x=0 (左侧边界)
- u=0u = 0u=0 on x=2x=2x=2 (右侧边界)
- u=0u = 0u=0 on y=1y=1y=1 for 0<x<10 < x < 10<x<1 (部分顶部边界)
在顶部边界 y=1y=1y=1 上,对于 1<x<21 < x < 21<x<2,uuu 未被指定,因此需要从泛函的变分中推导自然边界条件。考虑变分 δΦ=0\delta \Phi = 0δΦ=0,并利用积分 by parts,得到在 y=1y=1y=1 上 for 1<x<21 < x < 21<x<2 的条件:
ux+3uy+g(x)=0
u_x + 3u_y + g(x) = 0
ux+3uy+g(x)=0
答案:
驻点满足的偏微分方程为:
uxx+2uxy+3uyy=0
u_{xx} + 2u_{xy} + 3u_{yy} = 0
uxx+2uxy+3uyy=0
边界条件为:
- u(x,0)=0u(x,0) = 0u(x,0)=0 for 0<x<20 < x < 20<x<2
- u(0,y)=0u(0,y) = 0u(0,y)=0 for 0<y<10 < y < 10<y<1
- u(2,y)=0u(2,y) = 0u(2,y)=0 for 0<y<10 < y < 10<y<1
- u(x,1)=0u(x,1) = 0u(x,1)=0 for 0<x<10 < x < 10<x<1
- On y=1y=1y=1 for 1<x<21 < x < 21<x<2: ux+3uy+g(x)=0u_x + 3u_y + g(x) = 0ux+3uy+g(x)=0