当前位置: 首页 > news >正文

CuTe C++ 简介02,gemm_device cuda kernel 的实现

  

        《CuTe C++ 简介01,从示例开始 》 中,最后看到了 计算 gemm 的cuda kernel,使用 NVIDIA CUTLASS 的 CUTe (CUDA Tile) 库实现的高性能 GEMM (通用矩阵乘法) CUDA kernel。接下来解释一下这个内核的各个部分。文末再贴一遍代码,方便查看。

1. 模板参数和函数签名

template <class ProblemShape, class CtaTiler,class TA, class AStride, class ASmemLayout, class AThreadLayout,class TB, class BStride, class BSmemLayout, class BThreadLayout,class TC, class CStride, class CSmemLayout, class CThreadLayout,class Alpha, class Beta>

这个内核高度模板化,支持配置,

        任意数据类型 (TA, TB, TC);

        任意矩阵形状和步长;

        任意内存布局和线程映射;

        不同的标量类型 (Alpha, Beta);

2. 静态断言和预条件检查

  大量的 CUTE_STATIC_ASSERT_V 和 static_assert 确保在编译时验证如下内容,

        正确的张量维度;

        线程布局和数据分块的兼容性;

        内存布局的一致性;

3. 张量创建和分块

Tensor mA = make_tensor(make_gmem_ptr(A), select<0,2>(shape_MNK), dA);
Tensor gA = local_tile(mA, cta_tiler, cta_coord, Step<_1, X,_1>{});

        创建全局内存中的矩阵张量;

        使用 local_tile 将大矩阵分块为线程 block 处理的子块;

4. 共享内存分配

__shared__ TA smemA[cosize_v<ASmemLayout>];
Tensor sA = make_tensor(make_smem_ptr(smemA), sA_layout);

        为矩阵 A 和 B 分配共享内存;

        使用模板化的布局确保内存访问的高效性;

5. 数据分区

Tensor tAgA = local_partition(gA, tA, threadIdx.x);
Tensor tAsA = local_partition(sA, tA, threadIdx.x);

        将全局内存和共享内存的数据分区给各个线程;

        每个线程负责加载特定的数据块;

6. 累加器分配和初始化

Tensor tCrC = make_tensor_like(tCgC);
clear(tCrC);

        为每个线程创建寄存器中的累加器;

        初始化为零;

7. 主循环 (核心计算部分)

for (int k_tile = 0; k_tile < K_TILE_MAX; ++k_tile)
{copy(tAgA(_,_,k_tile), tAsA);copy(tBgB(_,_,k_tile), tBsB);cp_async_fence();cp_async_wait<0>();__syncthreads();gemm(tCsA, tCsB, tCrC);__syncthreads();
}

这是内核的核心部分:

  1. 数据加载: 将全局内存中的数据拷贝到共享内存;

  2. 异步等待: 使用 cp_async 指令实现异步数据加载;

  3. 同步: 确保所有线程完成数据加载;

  4. 计算: 从共享内存加载数据并进行矩阵乘法计算;

  5. 再次同步: 确保所有线程完成计算;

8. 收尾处理

axpby(alpha, tCrC, beta, tCgC);

        应用缩放因子 alpha 和 beta;

        将计算结果写回全局内存;

关键点复盘

  1. 双缓冲机制: 通过循环处理 K 维度,实现计算和数据加载的重叠;

  2. 高效内存访问: 使用共享内存减少全局内存访问;

  3. 线程级并行: 精细的线程调度和数据分区;

  4. 模板元编程: 编译时优化,生成高度特化的代码;

  5. 异步拷贝: 使用 cp_async 指令隐藏内存延迟;

        评价:这个内核展示了现代 GPU 编程的最佳实践,通过精细的内存层次管理和线程调度来实现高性能的矩阵乘法运算。

template <class ProblemShape, class CtaTiler,class TA, class AStride, class ASmemLayout, class AThreadLayout,class TB, class BStride, class BSmemLayout, class BThreadLayout,class TC, class CStride, class CSmemLayout, class CThreadLayout,class Alpha, class Beta>
__global__ static
__launch_bounds__(decltype(size(CThreadLayout{}))::value)
void
gemm_device(ProblemShape shape_MNK, CtaTiler cta_tiler,TA const* A, AStride dA, ASmemLayout sA_layout, AThreadLayout tA,TB const* B, BStride dB, BSmemLayout sB_layout, BThreadLayout tB,TC      * C, CStride dC, CSmemLayout          , CThreadLayout tC,Alpha alpha, Beta beta)
{using namespace cute;// PreconditionsCUTE_STATIC_ASSERT_V(rank(shape_MNK) == Int<3>{});                   // (M, N, K)CUTE_STATIC_ASSERT_V(rank(cta_tiler) == Int<3>{});                   // (BLK_M, BLK_N, BLK_K)static_assert(is_static<AThreadLayout>::value);static_assert(is_static<BThreadLayout>::value);static_assert(is_static<CThreadLayout>::value);CUTE_STATIC_ASSERT_V(size(tA) == size(tB));                          // NumThreadsCUTE_STATIC_ASSERT_V(size(tC) == size(tA));                          // NumThreadsCUTE_STATIC_ASSERT_V(size<0>(cta_tiler) % size<0>(tA) == Int<0>{});  // BLK_M / THR_MCUTE_STATIC_ASSERT_V(size<2>(cta_tiler) % size<1>(tA) == Int<0>{});  // BLK_K / THR_KCUTE_STATIC_ASSERT_V(size<1>(cta_tiler) % size<0>(tB) == Int<0>{});  // BLK_N / THR_NCUTE_STATIC_ASSERT_V(size<2>(cta_tiler) % size<1>(tB) == Int<0>{});  // BLK_K / THR_KCUTE_STATIC_ASSERT_V(size<0>(cta_tiler) % size<0>(tC) == Int<0>{});  // BLK_M / THR_MCUTE_STATIC_ASSERT_V(size<1>(cta_tiler) % size<1>(tC) == Int<0>{});  // BLK_N / THR_Nstatic_assert(is_static<ASmemLayout>::value);static_assert(is_static<BSmemLayout>::value);static_assert(is_static<CSmemLayout>::value);CUTE_STATIC_ASSERT_V(size<0>(ASmemLayout{}) == size<0>(cta_tiler));  // BLK_MCUTE_STATIC_ASSERT_V(size<0>(CSmemLayout{}) == size<0>(cta_tiler));  // BLK_MCUTE_STATIC_ASSERT_V(size<0>(BSmemLayout{}) == size<1>(cta_tiler));  // BLK_NCUTE_STATIC_ASSERT_V(size<1>(CSmemLayout{}) == size<1>(cta_tiler));  // BLK_NCUTE_STATIC_ASSERT_V(size<1>(ASmemLayout{}) == size<2>(cta_tiler));  // BLK_KCUTE_STATIC_ASSERT_V(size<1>(BSmemLayout{}) == size<2>(cta_tiler));  // BLK_KCUTE_STATIC_ASSERT_V(congruent(select<0,2>(shape_MNK), dA));         // dA strides for shape MKCUTE_STATIC_ASSERT_V(congruent(select<1,2>(shape_MNK), dB));         // dB strides for shape NKCUTE_STATIC_ASSERT_V(congruent(select<0,1>(shape_MNK), dC));         // dC strides for shape MN//// Full and Tiled Tensors//// Represent the full tensorsTensor mA = make_tensor(make_gmem_ptr(A), select<0,2>(shape_MNK), dA); // (M,K)Tensor mB = make_tensor(make_gmem_ptr(B), select<1,2>(shape_MNK), dB); // (N,K)Tensor mC = make_tensor(make_gmem_ptr(C), select<0,1>(shape_MNK), dC); // (M,N)// Get the appropriate blocks for this thread blockauto cta_coord = make_coord(blockIdx.x, blockIdx.y, _);              // (m,n,k)Tensor gA = local_tile(mA, cta_tiler, cta_coord, Step<_1, X,_1>{});  // (BLK_M,BLK_K,k)Tensor gB = local_tile(mB, cta_tiler, cta_coord, Step< X,_1,_1>{});  // (BLK_N,BLK_K,k)Tensor gC = local_tile(mC, cta_tiler, cta_coord, Step<_1,_1, X>{});  // (BLK_M,BLK_N)// Shared memory buffers__shared__ TA smemA[cosize_v<ASmemLayout>];__shared__ TB smemB[cosize_v<BSmemLayout>];Tensor sA = make_tensor(make_smem_ptr(smemA), sA_layout);            // (BLK_M,BLK_K)Tensor sB = make_tensor(make_smem_ptr(smemB), sB_layout);            // (BLK_N,BLK_K)//// Partition the copying of A and B tiles across the threads//// TUTORIAL: Example of simple raked partitioning of ThreadLayouts tA|tB over data A|B tilesTensor tAgA = local_partition(gA, tA, threadIdx.x);                  // (THR_M,THR_K,k)Tensor tAsA = local_partition(sA, tA, threadIdx.x);                  // (THR_M,THR_K)Tensor tBgB = local_partition(gB, tB, threadIdx.x);                  // (THR_N,THR_K,k)Tensor tBsB = local_partition(sB, tB, threadIdx.x);                  // (THR_N,THR_K)CUTE_STATIC_ASSERT_V(size<0>(tAgA) == size<0>(tAsA));                // THR_MCUTE_STATIC_ASSERT_V(size<1>(tAgA) == size<1>(tAsA));                // THR_KCUTE_STATIC_ASSERT_V(size<0>(tBgB) == size<0>(tBsB));                // THR_NCUTE_STATIC_ASSERT_V(size<1>(tBgB) == size<1>(tBsB));                // THR_K//// Define A/B partitioning and C accumulators//// TUTORIAL: Example of partitioning via projections of a ThreadLayout tC// Partition sA (BLK_M, BLK_K) by the rows of tCTensor tCsA = local_partition(sA, tC, threadIdx.x, Step<_1, X>{});   // (THR_M,BLK_K)// Partition sB (BLK_N, BLK_K) by the cols of tCTensor tCsB = local_partition(sB, tC, threadIdx.x, Step< X,_1>{});   // (THR_N,BLK_K)// Partition gC (M,N) by the tile of tCTensor tCgC = local_partition(gC, tC, threadIdx.x, Step<_1,_1>{});   // (THR_M,THR_N)// Allocate the accumulators -- same shape/layout as the partitioned dataTensor tCrC = make_tensor_like(tCgC);                                // (THR_M,THR_N)CUTE_STATIC_ASSERT_V(size<0>(tCrC) == size<0>(tCgC));                // THR_MCUTE_STATIC_ASSERT_V(size<0>(tCrC) == size<0>(tCsA));                // THR_MCUTE_STATIC_ASSERT_V(size<1>(tCrC) == size<1>(tCgC));                // THR_NCUTE_STATIC_ASSERT_V(size<1>(tCrC) == size<0>(tCsB));                // THR_NCUTE_STATIC_ASSERT_V(size<1>(tCsA) == size<1>(tCsB));                // BLK_K// Clear the accumulatorsclear(tCrC);#if 0if(thread0()) {print("  mA : "); print(  mA); print("\n");print("  gA : "); print(  gA); print("\n");print("  sA : "); print(  sA); print("\n");print("tAgA : "); print(tAgA); print("\n");print("tAsA : "); print(tAsA); print("\n");}
#endif#if 0if(thread0()) {print("  mB : "); print(  mB); print("\n");print("  gB : "); print(  gB); print("\n");print("  sB : "); print(  sB); print("\n");print("tBgB : "); print(tBgB); print("\n");print("tBsB : "); print(tBsB); print("\n");}
#endif#if 0if(thread0()) {print("  mC : "); print(  mC); print("\n");print("  gC : "); print(  gC); print("\n");print("tCsA : "); print(tCsA); print("\n");print("tCsB : "); print(tCsB); print("\n");print("tCgC : "); print(tCgC); print("\n");print("tCrC : "); print(tCrC); print("\n");}
#endif#if 1// TUTORIAL: Example of a simple mainloop that read tiles of data into shared memory,//           and then computes on those tiles.//   copy(.) operates on the global and shared memory via the tA|tB partitioning//   gemm(.) operates on the shared and register memory via the tC partitioningauto K_TILE_MAX = size<2>(tAgA);for (int k_tile = 0; k_tile < K_TILE_MAX; ++k_tile){// Copy gmem to smem with tA|tB thread-partitioned tensorscopy(tAgA(_,_,k_tile), tAsA);      // A   (THR_M,THR_K) -> (THR_M,THR_K)copy(tBgB(_,_,k_tile), tBsB);      // B   (THR_N,THR_K) -> (THR_N,THR_K)// TUTORIAL: The above call to copy(tAgA(_,_,k_tile), tAsA) is equivalent to//   Tensor tAgAk = tAgA(_,_,k_tile);//   CUTE_UNROLL//   for (int i = 0; i < size(tAsA); ++i) {//     tAsA(i) = tAgAk(i);//   }cp_async_fence();        // Label the end of (potential) cp.async instructionscp_async_wait<0>();      // Sync on all (potential) cp.async instructions__syncthreads();         // Wait for all threads to write to smem// Compute gemm on tC thread-partitioned smemgemm(tCsA, tCsB, tCrC);            // (THR_M,THR_N) += (THR_M,BLK_K) * (THR_N,BLK_K)// TUTORIAL: The above call to gemm(tCsA, tCsB, tCrC) is equivalent to//   CUTE_UNROLL//   for (int k = 0; k < size<1>(tCsA); ++k) {//     CUTE_UNROLL//     for (int m = 0; m < size<0>(tCrC); ++m) {//       CUTE_UNROLL//       for (int n = 0; n < size<1>(tCrC); ++n) {//         tCrC(m,n) += tCsA(m,k) * tCsB(n,k);//       }//     }//   }__syncthreads();         // Wait for all threads to read from smem}#endif//// Epilogue//axpby(alpha, tCrC, beta, tCgC);// TUTORIAL: The above call to axpby(alpha, tCrC, beta, tCgC) is equivalent to//   CUTE_UNROLL//   for (int i = 0; i < size(tCrC); ++i) {//     tCgC(i) = alpha * tCrC(i) + beta * tCgC(i);//   }
}


文章转载自:

http://4iZDO5W5.wsyst.cn
http://SKrvpVMK.wsyst.cn
http://Bzav9aAA.wsyst.cn
http://wtPmuKdj.wsyst.cn
http://DTCjiow2.wsyst.cn
http://JkUhoi00.wsyst.cn
http://4xBCDL3I.wsyst.cn
http://ZzKS6Gqf.wsyst.cn
http://jGMYFwf7.wsyst.cn
http://fLVMgyQx.wsyst.cn
http://g9dvJ7Im.wsyst.cn
http://NMKDqn7v.wsyst.cn
http://SnuGTM1i.wsyst.cn
http://H4nwCzQ3.wsyst.cn
http://OIb3oTWB.wsyst.cn
http://HjcSAMbc.wsyst.cn
http://SMEDEYDx.wsyst.cn
http://JlmHHHpC.wsyst.cn
http://uhoijfOt.wsyst.cn
http://tobpeuVL.wsyst.cn
http://2LoRnkyo.wsyst.cn
http://UbElTEu9.wsyst.cn
http://G6gkWWaI.wsyst.cn
http://wqvaL6ex.wsyst.cn
http://CVVbtpS8.wsyst.cn
http://psvbWaEK.wsyst.cn
http://SDhyhWhG.wsyst.cn
http://ywe0fD1m.wsyst.cn
http://WLMsmCvT.wsyst.cn
http://r13ewsDP.wsyst.cn
http://www.dtcms.com/a/370490.html

相关文章:

  • uniapp开发APP隐私检测不通过解决
  • Monorepo 是什么?如何使用并写自己的第三方库
  • 【56页PPT】华为集成服务交付ISD业务变革总体方案(附下载方式)
  • 九月六号练习题
  • 深度学习——PyTorch保存模型与调用模型
  • Go基础(⑤Consul)
  • 验证平台中所有的组件应该派生自UVM中的类
  • 企业微信智能表格高效使用指南
  • 自动化运维之ansible
  • 2025年上海市星光计划第十一届职业院校技能大赛高职组“信息安全管理与评估”赛项交换部分前6题详解(仅供参考)
  • Orin-Apollo园区版本:订阅多个摄像头画面拼接与硬编码RTMP推流
  • 多线程(六) ~ 定时器与锁
  • OpenSSL 1.0.1e 下载解压和运行方法(小白适用 附安装包)​
  • Qt图表功能学习
  • 【营销策略算法】关联规则学习-购物篮分析
  • 部署AIRI
  • 深度学习基础概念回顾(Pytorch架构)
  • 基于LSTM深度学习的网络流量测量算法matlab仿真
  • 【PyTorch实战:Tensor变形】5、 PyTorch Tensor指南:从基础操作到Autograd与GPU加速实战
  • 【基础-判断】@Entry装饰的自定义组件将作为页面的入口。在单个页面中可以使用多个@Entry装饰不同自定义组件。
  • 驱动开发系列71 - GLSL编译器实现 - 指令选择
  • 贪心算法应用:化工反应器调度问题详解
  • OpenAvatarChat项目在Windows本地运行指南
  • canal+DataX实现数据全量/实时同步
  • Jenkins运维之路(自动获得分支tag自动构建)
  • 服务器内存和普通计算机内存在技术方面有什么区别?
  • 同一台nginx中配置多个前端项目的三种方式
  • 【LeetCode热题100道笔记】排序链表
  • Shell 脚本实现系统监控与告警
  • 【算法--链表】86.分割链表--通俗讲解