【高等数学】第九章 多元函数微分法及其应用——第七节 方向导数与梯度
上一节:【高等数学】第九章 多元函数微分法及其应用——第六节 多元函数微分学的几何应用
总目录:【高等数学】 目录
文章目录
- 1. 方向导数
- 2. 梯度
1. 方向导数
- 定义
设lll是xOyxOyxOy平面上以P0(x0,y0)P_0(x_0, y_0)P0(x0,y0)为始点的一条射线,el=(cosα,cosβ)\boldsymbol{e}_l = (\cos \alpha, \cos \beta)el=(cosα,cosβ)是与lll同方向的单位向量.
射线lll的参数方程为{x=x0+tcosα,y=y0+tcosβ(t⩾0).\begin{cases} x = x_0 + t\cos \alpha, \\ y = y_0 + t\cos \beta \end{cases} \quad (t \geqslant 0). {x=x0+tcosα,y=y0+tcosβ(t⩾0). 设函数z=f(x,y)z = f(x, y)z=f(x,y)在点P0(x0,y0)P_0(x_0, y_0)P0(x0,y0)的某个邻域U(P0)U(P_0)U(P0)内有定义,P(x0+tcosα,y0+tcosβ)P(x_0 + t\cos \alpha, y_0 + t\cos \beta)P(x0+tcosα,y0+tcosβ)为lll上另一点,且P∈U(P0)P \in U(P_0)P∈U(P0).如果函数增量f(x0+tcosα,y0+tcosβ)−f(x0,y0)f(x_0 + t\cos \alpha, y_0 + t\cos \beta) - f(x_0, y_0)f(x0+tcosα,y0+tcosβ)−f(x0,y0)与PPP到P0P_0P0的距离∣PP0∣=t|PP_0| = t∣PP0∣=t的比值f(x0+tcosα,y0+tcosβ)−f(x0,y0)t\dfrac{f(x_0 + t\cos \alpha, y_0 + t\cos \beta) - f(x_0, y_0)}{t} tf(x0+tcosα,y0+tcosβ)−f(x0,y0)当PPP沿着lll趋于P0P_0P0(即t→0+t \to 0^+t→0+)时的极限存在,那么称此极限为函数f(x,y)f(x, y)f(x,y)在点P0P_0P0沿方向lll的方向导数,记作∂f∂l∣(x0,y0)\left. \dfrac{\partial f}{\partial l} \right|_{(x_0, y_0)}∂l∂f(x0,y0),即∂f∂l∣(x0,y0)=limt→0+f(x0+tcosα,y0+tcosβ)−f(x0,y0)t.\left. \dfrac{\partial f}{\partial l} \right|_{(x_0, y_0)} = \lim_{t \to 0^+} \dfrac{f(x_0 + t\cos \alpha, y_0 + t\cos \beta) - f(x_0, y_0)}{t}. ∂l∂f(x0,y0)=t→0+limtf(x0+tcosα,y0+tcosβ)−f(x0,y0).方向导数∂f∂l∣(x0,y0)\left. \dfrac{\partial f}{\partial l} \right|_{(x_0, y_0)}∂l∂f(x0,y0)就是函数f(x,y)f(x, y)f(x,y)在点P0(x0,y0)P_0(x_0, y_0)P0(x0,y0)处沿方向lll的变化率
若函数f(x,y)f(x, y)f(x,y)在点P0(x0,y0)P_0(x_0, y_0)P0(x0,y0)的偏导数存在,
令el=(1,0)\boldsymbol{e}_l = (1, 0)el=(1,0),∂f∂l∣(x0,y0)=limt→0+f(x0+t,y0)−f(x0,y0)t=fx(x0,y0)\displaystyle\left. \dfrac{\partial f}{\partial l} \right|_{(x_0, y_0)} = \lim_{t \to 0^+} \dfrac{f(x_0 + t, y_0) - f(x_0, y_0)}{t} = f_x(x_0, y_0)∂l∂f(x0,y0)=t→0+limtf(x0+t,y0)−f(x0,y0)=fx(x0,y0)
令el=(0,1)\boldsymbol{e}_l = (0, 1)el=(0,1),∂f∂l∣(x0,y0)=limt→0+f(x0,y0+t)−f(x0,y0)t=fy(x0,y0)\displaystyle\left. \dfrac{\partial f}{\partial l} \right|_{(x_0, y_0)} = \lim_{t \to 0^+} \dfrac{f(x_0 , y_0+ t) - f(x_0, y_0)}{t} = f_y(x_0, y_0)∂l∂f(x0,y0)=t→0+limtf(x0,y0+t)−f(x0,y0)=fy(x0,y0) - 方向导数的计算
如果函数f(x,y)f(x,y)f(x,y)在点P0(x0,y0)P_0(x_0,y_0)P0(x0,y0)可微分,
那么函数在该点沿任一方向lll的方向导数存在,且有∂f∂l∣(x0,y0)=fx(x0,y0)cosα+fy(x0,y0)cosβ\left. \dfrac{\partial f}{\partial l} \right|_{(x_0,y_0)} = f_x(x_0,y_0)\cos \alpha + f_y(x_0,y_0)\cos \beta∂l∂f(x0,y0)=fx(x0,y0)cosα+fy(x0,y0)cosβ其中cosα\cos \alphacosα和cosβ\cos \betacosβ是方向lll的方向余弦.f(x0+Δx,y0+Δy)−f(x0,y0)=fx(x0,y0)Δx+fy(x0,y0)Δy+o((Δx)2+(Δy)2).f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)= f_x(x_0, y_0)\Delta x + f_y(x_0, y_0)\Delta y + o\left( \sqrt{(\Delta x)^2 + (\Delta y)^2} \right).f(x0+Δx,y0+Δy)−f(x0,y0)=fx(x0,y0)Δx+fy(x0,y0)Δy+o((Δx)2+(Δy)2).
令Δx=tcosα,Δy=tsinα,Δx2+Δy2=t\Delta x=t\cos\alpha,\Delta y=t\sin\alpha,\sqrt{\Delta x^2+\Delta y^2}=tΔx=tcosα,Δy=tsinα,Δx2+Δy2=t
∂f∂l∣(x0,y0)=limt→0+f(x0+tcosα,y0+tcosβ)−f(x0,y0)t=fx(x0,y0)cosα+fy(x0,y0)cosβ\displaystyle\left. \dfrac{\partial f}{\partial l} \right|_{(x_0, y_0)} = \lim_{t \to 0^+} \dfrac{f(x_0 + t\cos \alpha, y_0 + t\cos \beta) - f(x_0, y_0)}{t}=f_x(x_0,y_0)\cos \alpha + f_y(x_0,y_0)\cos \beta∂l∂f(x0,y0)=t→0+limtf(x0+tcosα,y0+tcosβ)−f(x0,y0)=fx(x0,y0)cosα+fy(x0,y0)cosβ - 推广到三元函数
对于三元函数f(x,y,z)f(x, y, z)f(x,y,z)来说,它在空间一点P0(x0,y0,z0)P_0(x_0, y_0, z_0)P0(x0,y0,z0)沿方向el=(cosα,cosβ,cosγ)\boldsymbol{e}_l = (\cos \alpha, \cos \beta, \cos \gamma)el=(cosα,cosβ,cosγ)的方向导数为∂f∂l∣(x0,y0,z0)=limt→0+f(x0+tcosα,y0+tcosβ,z0+tcosγ)−f(x0,y0,z0)t.\left. \dfrac{\partial f}{\partial l} \right|_{(x_0, y_0, z_0)} = \lim\limits_{t \to 0^+} \dfrac{f(x_0 + t\cos \alpha, y_0 + t\cos \beta, z_0 + t\cos \gamma) - f(x_0, y_0, z_0)}{t}. ∂l∂f(x0,y0,z0)=t→0+limtf(x0+tcosα,y0+tcosβ,z0+tcosγ)−f(x0,y0,z0).同样可以证明:如果函数f(x,y,z)f(x, y, z)f(x,y,z)在点(x0,y0,z0)(x_0, y_0, z_0)(x0,y0,z0)可微分,那么函数在该点沿着方向el=(cosα,cosβ,cosγ)\boldsymbol{e}_l = (\cos \alpha, \cos \beta, \cos \gamma)el=(cosα,cosβ,cosγ)的方向导数为∂f∂l∣(x0,y0,z0)=fx(x0,y0,z0)cosα+fy(x0,y0,z0)cosβ+fz(x0,y0,z0)cosγ\left. \dfrac{\partial f}{\partial l} \right|_{(x_0, y_0, z_0)} = f_x(x_0, y_0, z_0)\cos \alpha + f_y(x_0, y_0, z_0)\cos \beta +f_z(x_0, y_0, z_0)\cos \gamma ∂l∂f(x0,y0,z0)=fx(x0,y0,z0)cosα+fy(x0,y0,z0)cosβ+fz(x0,y0,z0)cosγ
2. 梯度
- 二元函数情形下的定义
在二元函数的情形,设函数f(x,y)f(x,y)f(x,y)在平面区域DDD内具有一阶连续偏导数,则对于每一点P0(x0,y0)∈DP_0(x_0,y_0) \in DP0(x0,y0)∈D,都可定出一个向量fx(x0,y0)i+fy(x0,y0)j,f_x(x_0,y_0)\boldsymbol{i} + f_y(x_0,y_0)\boldsymbol{j},fx(x0,y0)i+fy(x0,y0)j,这向量称为函数f(x,y)f(x,y)f(x,y)在点P0(x0,y0)P_0(x_0,y_0)P0(x0,y0)的梯度,记作gradf(x0,y0)\mathbf{grad} f(x_0,y_0)gradf(x0,y0)或∇f(x0,y0)\nabla f(x_0,y_0)∇f(x0,y0),即gradf(x0,y0)=∇f(x0,y0)=fx(x0,y0)i+fy(x0,y0)j.\mathbf{grad} f(x_0,y_0) = \nabla f(x_0,y_0) = f_x(x_0,y_0)\boldsymbol{i} + f_y(x_0,y_0)\boldsymbol{j}.gradf(x0,y0)=∇f(x0,y0)=fx(x0,y0)i+fy(x0,y0)j.
其中∇=∂∂xi+∂∂yj\nabla = \dfrac{\partial}{\partial x}\boldsymbol{i} + \dfrac{\partial}{\partial y}\boldsymbol{j}∇=∂x∂i+∂y∂j称为(二维的)向量微分算子或Nabla\text{Nabla}Nabla算子,∇f=∂f∂xi+∂f∂yj\nabla f = \dfrac{\partial f}{\partial x}\boldsymbol{i} + \dfrac{\partial f}{\partial y}\boldsymbol{j}∇f=∂x∂fi+∂y∂fj。 - 梯度与方向导数的关系
如果函数f(x,y)f(x,y)f(x,y)在点P0(x0,y0)P_0(x_0,y_0)P0(x0,y0)可微分,el=(cosα,cosβ)\boldsymbol{e}_l = (\cos\alpha,\cos\beta)el=(cosα,cosβ)是与方向lll同向的单位向量,
那么∂f∂l∣(x0,y0)=fx(x0,y0)cosα+fy(x0,y0)cosβ=gradf(x0,y0)⋅el=∣gradf(x0,y0)∣cos⟨gradf(x0,y0),el⟩\begin{aligned}\left. \dfrac{\partial f}{\partial l} \right\rvert_{(x_0,y_0)} &= f_x(x_0,y_0)\cos\alpha + f_y(x_0,y_0)\cos\beta\\&= \boldsymbol{\mathbf{grad }} f(x_0,y_0) \cdot \boldsymbol{e}_l = \vert \boldsymbol{\mathbf{grad }} f(x_0,y_0) \vert \cos\langle\boldsymbol{\mathbf{grad }} f(x_0,y_0),\boldsymbol{e}_l\rangle\end{aligned}∂l∂f(x0,y0)=fx(x0,y0)cosα+fy(x0,y0)cosβ=gradf(x0,y0)⋅el=∣gradf(x0,y0)∣cos⟨gradf(x0,y0),el⟩函数在梯度方向的方向导数达到最大值,此时函数值的变化最快,方向导数的大小等于梯度的模 - 等值线
用平面z=cz=cz=c截z=f(x,y)z=f(x,y)z=f(x,y)的曲线在xOyxOyxOy平面的投影f(x,y)=cf(x,y)=cf(x,y)=c,在该投影上函数值都为ccc,因此该投影也称为等值线
等值线函数在任一点P0(x0,y0)P_0(x_0,y_0)P0(x0,y0)处的方向导数都为000,因此等值线函数的梯度方向垂直于等值线。
若fx,fyf_x, f_yfx,fy不同时为零,则等值线f(x,y)=cf(x,y) = cf(x,y)=c上任一点P0(x0,y0)P_0(x_0,y_0)P0(x0,y0)处的一个单位法向量为n=∇f(x0,y0)∣∇f(x0,y0)∣\boldsymbol{n}=\dfrac{\nabla f(x_0,y_0)}{|\nabla f(x_0,y_0)|}n=∣∇f(x0,y0)∣∇f(x0,y0) - 推广到三元函数
设函数f(x,y,z)f(x,y,z)f(x,y,z)在空间区域GGG内具有一阶连续偏导数,则对于每一点P0(x0,y0,z0)∈GP_0(x_0,y_0,z_0) \in GP0(x0,y0,z0)∈G,都可定出一个向量fx(x0,y0,z0)i+fy(x0,y0,z0)j+fz(x0,y0,z0)k,f_x(x_0,y_0,z_0)\boldsymbol{i} + f_y(x_0,y_0,z_0)\boldsymbol{j} + f_z(x_0,y_0,z_0)\boldsymbol{k},fx(x0,y0,z0)i+fy(x0,y0,z0)j+fz(x0,y0,z0)k,这向量称为函数f(x,y,z)f(x,y,z)f(x,y,z)在点P0(x0,y0,z0)P_0(x_0,y_0,z_0)P0(x0,y0,z0)的梯度, 将它记作gradf(x0,y0,z0)\mathbf{grad } f(x_0,y_0,z_0)gradf(x0,y0,z0)或∇f(x0,y0,z0)\nabla f(x_0,y_0,z_0)∇f(x0,y0,z0), 即gradf(x0,y0,z0)=∇f(x0,y0,z0)=fx(x0,y0,z0)i+fy(x0,y0,z0)j+fz(x0,y0,z0)k.\mathbf{grad } f(x_0,y_0,z_0) = \nabla f(x_0,y_0,z_0) = f_x(x_0,y_0,z_0)\boldsymbol{i} + f_y(x_0,y_0,z_0)\boldsymbol{j} + f_z(x_0,y_0,z_0)\boldsymbol{k}.gradf(x0,y0,z0)=∇f(x0,y0,z0)=fx(x0,y0,z0)i+fy(x0,y0,z0)j+fz(x0,y0,z0)k.其中∇=∂∂xi+∂∂yj+∂∂zk\nabla = \dfrac{\partial}{\partial x}\boldsymbol{i} + \dfrac{\partial}{\partial y}\boldsymbol{j} + \dfrac{\partial}{\partial z}\boldsymbol{k}∇=∂x∂i+∂y∂j+∂z∂k称为(三维的)向量微分算子或Nabla\text{Nabla}Nabla算子, ∇f=∂f∂xi+∂f∂yj+∂f∂zk\nabla f = \dfrac{\partial f}{\partial x}\boldsymbol{i} + \dfrac{\partial f}{\partial y}\boldsymbol{j} + \dfrac{\partial f}{\partial z}\boldsymbol{k}∇f=∂x∂fi+∂y∂fj+∂z∂fk.
经过与二元函数的情形完全类似的讨论可知,三元函数f(x,y,z)f(x,y,z)f(x,y,z)在一点的梯度∇f\nabla f∇f是这样一个向量,它的方向是函数f(x,y,z)f(x,y,z)f(x,y,z)在这点的方向导数取得最大值的方向,它的模就等于方向导数的最大值。
如果引进曲面f(x,y,z)=cf(x,y,z) = cf(x,y,z)=c为函数f(x,y,z)f(x,y,z)f(x,y,z)的等值面的概念,那么可得函数f(x,y,z)f(x,y,z)f(x,y,z)在一点(x0,y0,z0)(x_0,y_0,z_0)(x0,y0,z0)的梯度∇f(x0,y0,z0)\nabla f(x_0,y_0,z_0)∇f(x0,y0,z0)的方向就是等值面f(x,y,z)=cf(x,y,z) = cf(x,y,z)=c在这点的法线方向n\boldsymbol{n}n,而梯度的模∣∇f(x0,y0,z0)∣\vert \nabla f(x_0,y_0,z_0) \vert∣∇f(x0,y0,z0)∣就是函数沿这个法线方向的方向导数∂f∂n\dfrac{\partial f}{\partial n}∂n∂f。 - 数量场与向量场
如果对于空间区域GGG内的任一点MMM,都有一个确定的数量f(M)f(M)f(M),
那么称在这空间区域GGG内确定了一个数量场(例如温度场、密度场等)。
一个数量场可用一个数量函数f(M)f(M)f(M)来确定。
如果与点MMM相对应的是一个向量F(M)\boldsymbol{F}(M)F(M),
那么称在这空间区域GGG内确定了一个向量场(例如力场、速度场等)。
一个向量场可用一个向量值函数F(M)\boldsymbol{F}(M)F(M)来确定,而F(M)=P(M)i+Q(M)j+R(M)k,\boldsymbol{F}(M) = P(M)\boldsymbol{i} + Q(M)\boldsymbol{j} + R(M)\boldsymbol{k},F(M)=P(M)i+Q(M)j+R(M)k,其中P(M),Q(M),R(M)P(M), Q(M), R(M)P(M),Q(M),R(M)是点MMM的数量函数。
若向量场F(M)\boldsymbol{F}(M)F(M)是某个数量函数f(M)f(M)f(M)的梯度,
则称f(M)f(M)f(M)是向量场F(M)\boldsymbol{F}(M)F(M)的一个势函数,并称向量场F(M)\boldsymbol{F}(M)F(M)为势场。
由此可知,由数量函数f(M)f(M)f(M)产生的梯度场gradf(M)\mathbf{grad } f(M)gradf(M)是一个势场。
但需注意,任意一个向量场并不一定都是势场,因为它不一定是某个数量函数的梯度。
下一节:
总目录:【高等数学】 目录