第四章 数字特征
专题一 期望与方差
1.期望的定义
(1)离散型随机变量的概率分布为
则期望定义为。(取值乘概率再求和)
对于,其期望为
。
★(2)连续型随机变量的概率密度为
,期望定义为
。
(求X函数的期望,将X改成x,函数照抄,乘X的概率密度,再积分)
对于,其期望为
。
(3)二维离散型随机变量的联合概率分布为
函数的期望为
。先求z的概率分布
(4)二维连续型随机变量的联合概率密度为
,函数
的期望为
。
(求(X,Y)的函数的期望,将X,Y改写为x,y,函数照抄,乘联合概率密度作二重积分)
特别地,,
2.期望的性质
线性性质:。线性组合,线性函数
乘法性质:与
不相关。
不相关 -> 不是独立 -> 范围更大,没有任何关系,不在直线上有可能在圆上
若与
独立,则
。
3.方差的定义
平方的期望-期望的平方
4.方差的性质
(1)线性变换方差:。
(2)和差方差:。
推论与
不相关。
特别地,若与
相互独立,则
(3)乘积方差:若与
相互独立,
。
5.八大分布的期望与方差
分布 | 记号 | 期望 | 方差 |
---|---|---|---|
0-1分布 | |||
二项分布 | |||
泊松分布 | |||
几何分布 | |||
超几何分布 | |||
均匀分布 | |||
指数分布 | |||
正态分布 |
专题二 协方差与相关系数
1.协方差的定义
。
2.协方差的性质
(1)对称性:,
。
(2)双线性:。
3.相关系数的定义
4.相关系数的性质
(1)
(2)
不相关(不共线)
(3);
5.矩的定义
设为随机变量
阶原点矩:
。
阶中心矩:
。平均
设,
为随机变量
阶混合原点矩:
。
阶混合中心矩:
【评注】显然期望为一阶原点矩,方差为二阶中心矩,协方差为阶混合中心矩
一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一