当前位置: 首页 > news >正文

动手学深度学习(pytorch版):第三章节—线性神经网络(6) softmax回归的从零开始实现

使用中引入的Fashion-MNIST数据集, 并设置数据迭代器的批量大小为256。

import torch
from IPython import display
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

1. 初始化模型参数

和之前线性回归的例子一样,这里的每个样本都将用固定长度的向量表示。 原始数据集中的每个样本都是的图像。 本节将展平每个图像,把它们看作长度为784的向量。 在后面的章节中,我们将讨论能够利用图像空间结构的特征, 但现在我们暂时只把每个像素位置看作一个特征。

回想一下,在softmax回归中,我们的输出与类别一样多。 因为我们的数据集有10个类别,所以网络输出维度为10。 因此,权重将构成一个的矩阵, 偏置将构成一个的行向量。 与线性回归一样,我们将使用正态分布初始化我们的权重W,偏置初始化为0。

num_inputs = 784
num_outputs = 10

W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)
b = torch.zeros(num_outputs, requires_grad=True)

2. 定义softmax操作

在实现softmax回归模型之前,我们简要回顾一下sum运算符如何沿着张量中的特定维度

X = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
X.sum(0, keepdim=True), X.sum(1, keepdim=True)

分母或规范化常数,有时也称为配分函数(其对数称为对数-配分函数)。

def softmax(X):
X_exp = torch.exp(X)
partition = X_exp.sum(1, keepdim=True)
return X_exp / partition  # 这里应用了广播机制

正如上述代码,对于任何随机输入,我们将每个元素变成一个非负数。 此外,依据概率原理,每行总和为1。

X = torch.normal(0, 1, (2, 5))
X_prob = softmax(X)
X_prob, X_prob.sum(1)

注意,虽然这在数学上看起来是正确的,但我们在代码实现中有点草率。 矩阵中的非常大或非常小的元素可能造成数值上溢或下溢,但我们没有采取措施来防止这点。

3. 定义模型

定义softmax操作后,我们可以实现softmax回归模型。 下面的代码定义了输入如何通过网络映射到输出。 注意,将数据传递到模型之前,我们使用reshape函数将每张原始图像展平为向量。

def net(X):
return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)

4. 定义损失函数

下面,创建一个数据样本y_hat,其中包含2个样本在3个类别的预测概率, 以及它们对应的标签y。 有了y,我们知道在第一个样本中,第一类是正确的预测; 而在第二个样本中,第三类是正确的预测。 然后使用y作为y_hat中概率的索引, 我们选择第一个样本中第一个类的概率和第二个样本中第三个类的概率。

y = torch.tensor([0, 2])
y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y_hat[[0, 1], y]

现在我们只需一行代码就可以实现交叉熵损失函数。

def cross_entropy(y_hat, y):
return - torch.log(y_hat[range(len(y_hat)), y])

cross_entropy(y_hat, y)

5. 分类精度

给定预测概率分布y_hat,当我们必须输出硬预测(hard prediction)时, 我们通常选择预测概率最高的类。 许多应用都要求我们做出选择。Gmail做分类时可能在内部估计概率,但最终它必须在类中选择一个。

当预测与标签分类y一致时,即是正确的。 分类精度即正确预测数量与总预测数量之比。 虽然直接优化精度可能很困难(因为精度的计算不可导), 但精度通常是我们最关心的性能衡量标准,我们在训练分类器时几乎总会关注它。

为了计算精度,我们执行以下操作。 首先,如果y_hat是矩阵,那么假定第二个维度存储每个类的预测分数。 我们使用argmax获得每行中最大元素的索引来获得预测类别。 然后我们将预测类别与真实y元素进行比较。 由于等式运算符“==”对数据类型很敏感, 因此我们将y_hat的数据类型转换为与y的数据类型一致。 结果是一个包含0(错)和1(对)的张量。 最后,我们求和会得到正确预测的数量。

def accuracy(y_hat, y):  #@save
"""计算预测正确的数量"""
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
y_hat = y_hat.argmax(axis=1)
cmp = y_hat.type(y.dtype) == y
return float(cmp.type(y.dtype).sum())

我们将继续使用之前定义的变量y_haty分别作为预测的概率分布和标签。 可以看到,第一个样本的预测类别是2(该行的最大元素为0.6,索引为2),这与实际标签0不一致。 第二个样本的预测类别是2(该行的最大元素为0.5,索引为2),这与实际标签2一致。 因此,这两个样本的分类精度率为0.5。

accuracy(y_hat, y) / len(y)

同样,对于任意数据迭代器data_iter可访问的数据集, 我们可以评估在任意模型net的精度。

def evaluate_accuracy(net, data_iter):  #@save
"""计算在指定数据集上模型的精度"""
if isinstance(net, torch.nn.Module):
net.eval()  # 将模型设置为评估模式
metric = Accumulator(2)  # 正确预测数、预测总数
with torch.no_grad():
for X, y in data_iter:
metric.add(accuracy(net(X), y), y.numel())
return metric[0] / metric[1]

这里定义一个实用程序类Accumulator,用于对多个变量进行累加。 在上面的evaluate_accuracy函数中, 我们在Accumulator实例中创建了2个变量, 分别用于存储正确预测的数量和预测的总数量。 当我们遍历数据集时,两者都将随着时间的推移而累加。

class Accumulator:  #@save
"""在n个变量上累加"""
def __init__(self, n):
self.data = [0.0] * n

    def add(self, *args):
self.data = [a + float(b) for a, b in zip(self.data, args)]

    def reset(self):
self.data = [0.0] * len(self.data)

    def __getitem__(self, idx):
return self.data[idx]

由于我们使用随机权重初始化net模型, 因此该模型的精度应接近于随机猜测。 例如在有10个类别情况下的精度为0.1。

evaluate_accuracy(net, test_iter)

6. 训练

在这里,我们重构训练过程的实现以使其可重复使用。 首先,我们定义一个函数来训练一个迭代周期。 请注意,updater是更新模型参数的常用函数,它接受批量大小作为参数。 它可以是d2l.sgd函数,也可以是框架的内置优化函数。

def train_epoch_ch3(net, train_iter, loss, updater):  #@save
"""训练模型一个迭代周期(定义见第3章)"""
# 将模型设置为训练模式
if isinstance(net, torch.nn.Module):
net.train()
# 训练损失总和、训练准确度总和、样本数
metric = Accumulator(3)
for X, y in train_iter:
# 计算梯度并更新参数
y_hat = net(X)
l = loss(y_hat, y)
if isinstance(updater, torch.optim.Optimizer):
# 使用PyTorch内置的优化器和损失函数
updater.zero_grad()
l.mean().backward()
updater.step()
else:
# 使用定制的优化器和损失函数
l.sum().backward()
updater(X.shape[0])
metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
# 返回训练损失和训练精度
return metric[0] / metric[2], metric[1] / metric[2]

在展示训练函数的实现之前,我们定义一个在动画中绘制数据的实用程序类Animator

class Animator:  #@save
"""在动画中绘制数据"""
def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
ylim=None, xscale='linear', yscale='linear',
fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
figsize=(3.5, 2.5)):
# 增量地绘制多条线
if legend is None:
legend = []
d2l.use_svg_display()
self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
if nrows * ncols == 1:
self.axes = [self.axes, ]
# 使用lambda函数捕获参数
self.config_axes = lambda: d2l.set_axes(
self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
self.X, self.Y, self.fmts = None, None, fmts

    def add(self, x, y):
# 向图表中添加多个数据点
if not hasattr(y, "__len__"):
y = [y]
n = len(y)
if not hasattr(x, "__len__"):
x = [x] * n
if not self.X:
self.X = [[] for _ in range(n)]
if not self.Y:
self.Y = [[] for _ in range(n)]
for i, (a, b) in enumerate(zip(x, y)):
if a is not None and b is not None:
self.X[i].append(a)
self.Y[i].append(b)
self.axes[0].cla()
for x, y, fmt in zip(self.X, self.Y, self.fmts):
self.axes[0].plot(x, y, fmt)
self.config_axes()
display.display(self.fig)
display.clear_output(wait=True)

接下来我们实现一个训练函数, 它会在train_iter访问到的训练数据集上训练一个模型net。 该训练函数将会运行多个迭代周期(由num_epochs指定)。 在每个迭代周期结束时,利用test_iter访问到的测试数据集对模型进行评估。 我们将利用Animator类来可视化训练进度。

def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):  #@save
"""训练模型(定义见第3章)"""
animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
legend=['train loss', 'train acc', 'test acc'])
for epoch in range(num_epochs):
train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
test_acc = evaluate_accuracy(net, test_iter)
animator.add(epoch + 1, train_metrics + (test_acc,))
train_loss, train_acc = train_metrics
assert train_loss < 0.5, train_loss
assert train_acc <= 1 and train_acc > 0.7, train_acc
assert test_acc <= 1 and test_acc > 0.7, test_acc

作为一个从零开始的实现, 小批量随机梯度下降来优化模型的损失函数,设置学习率为0.1。

lr = 0.1

def updater(batch_size):
return d2l.sgd([W, b], lr, batch_size)

现在,我们训练模型10个迭代周期。 请注意,迭代周期(num_epochs)和学习率(lr)都是可调节的超参数。 通过更改它们的值,我们可以提高模型的分类精度。

num_epochs = 10
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)

7. 预测

现在训练已经完成,我们的模型已经准备好对图像进行分类预测。 给定一系列图像,我们将比较它们的实际标签(文本输出的第一行)和模型预测(文本输出的第二行)。

def predict_ch3(net, test_iter, n=6):  #@save
"""预测标签(定义见第3章)"""
for X, y in test_iter:
break
trues = d2l.get_fashion_mnist_labels(y)
preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
d2l.show_images(
X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n])

predict_ch3(net, test_iter)

http://www.dtcms.com/a/334768.html

相关文章:

  • 基于深度学习的老照片修复系统
  • 嵌入式硬件篇---电源电路
  • SpringBoot自动配置原理(二)
  • 智能客服、AI工作流、语音、聊天模板
  • MySQL的下载安装(MSI和ZIP版本都有)
  • 【Kubernetes系列】Kubernetes 中 Pod 层参数与 Deployment 层 Env 参数的区别与级别分析
  • WSL中占用磁盘空间大问题解决
  • 自适应阈值二值化参数详解 ,计算机视觉,图片处理 邻域大小 调整常数(C=3)和可视化调节参数的应用程序
  • 区块链技术原理(14)-以太坊数据结构
  • ubuntu更新chrome版本
  • 我的世界Java版1.21.4的Fabric模组开发教程(十九)自定义生物群系
  • 力扣(LeetCode) ——622. 设计循环队列(C语言)
  • 《C语言程序设计》笔记p10
  • 如何拿捏unittest自动化测试框架?
  • 代码随想录算法训练营四十三天|图论part01
  • 同创物流学习记录2·电车
  • 【手撕JAVA多线程】1.从设计初衷去看JAVA的线程操作
  • 【C++】STL 容器—list 底层剖析
  • Java应届生求职八股(5)---并发编程篇
  • JCTools 无锁并发队列基础:ConcurrentCircularArrayQueue
  • 【论文阅读笔记】--Eurosys--HCache
  • 安全审计-firewall防火墙
  • 探索粒子世界:从基础理论到前沿应用与未来展望
  • 基于动捕实现Epuck2的轨迹跟踪
  • 每日算法刷题Day62:8.16:leetcode 堆8道题,用时2h30min
  • 【Java基础面试题】数据类型
  • 【电路笔记 通信】AXI4-Lite协议 论文阅读 简化的高级可扩展接口(AdvancedeXtensibleInterface4Lite)
  • 小白挑战一周上架元服务——元服务开发06
  • 元宇宙教育:打破时空限制的学习革命
  • MQ迁移方案