【CV 目标检测】Fast RCNN模型①——与R-CNN区别
3.Fast RCNN模型
相比于R-CNN,Fast RCNN模型主要在以下三个方面进行了改进:
- 提高训练和预测速度
R-CNN首先从测试图中提取2000个候选区域,然后将这2000个候选区域分别输入到预训练好的CNN中提取特征。由于候选区域有大量的重叠,这种提取特征的方法,就会重复的计算重叠区域的特征。在Fast-RCNN中,将整张图输入到CNN中提取特征,将候选区域映射到特征图上,这样就避免了对图像区域进行重复处理,提高效率减少时间。 - 不需要额外的空间保存CNN网络提取的特征向量
RCNN中需要将提取到的特征保存下来,用于为每个类训练单独的SVM分类器和边框回归器。在Fast-RCNN中,将类别判断和边框回归统一使用CNN实现,不需要额外的空间存储特征。 - 不再直接对候选区域进行缩放
RCNN中需要将候选区域进行缩放送入CNN中进行特征提取,在Fast-RCNN中使用ROIpooling的方法进行尺寸的调整。