当前位置: 首页 > news >正文

人工智能中的(特征选择)数据过滤方法和包裹方法

在人工智能(AI)和机器学习中,“数据过滤方法”和“包裹方法”是两种常见的特征选择技术,用于提高模型性能、减少计算成本,并增强模型的可解释性。下面我来详细解释一下它们的含义和区别:

🧹 数据过滤方法(Filter Methods)

定义:在建模之前,独立地评估每个特征与目标变量之间的关系,选择最相关的特征。

特点

  • 与模型无关(模型不可知)

  • 快速、计算效率高

  • 适用于高维数据(如文本或基因数据)

常见方法

  • 方差阈值(Variance Threshold):去除方差过低的特征

  • 相关系数(如皮尔逊相关):选择与目标变量相关性高的特征

  • 卡方检验(Chi-square test):用于分类任务

  • 信息增益(Information Gain):用于评估特征对目标变量的信息贡献

优点

  • 简单快速

  • 不依赖具体模型

  • 可用于预处理阶段

缺点

  • 忽略特征之间的交互

  • 可能选出对模型实际效果不佳的特征

🎁 包裹方法(Wrapper Methods)

定义:将特征选择过程与模型训练结合起来,通过评估模型在不同特征子集上的表现来选择最佳特征组合。

特点

  • 与模型紧密结合

  • 计算成本高

  • 更能捕捉特征之间的相互作用

常见方法

  • 递归特征消除(RFE, Recursive Feature Elimination)

  • 前向选择(Forward Selection)

  • 后向消除(Backward Elimination)

  • 穷举搜索(Exhaustive Search)

优点

  • 考虑特征之间的组合效果

  • 通常能得到更优的特征子集

缺点

  • 计算代价高,尤其在特征维度高时

  • 可能容易过拟合

🧠 举个例子来理解

假设你在做一个预测学生考试成绩的模型:

  • 过滤方法可能会告诉你“学习时间”和“睡眠时间”与成绩高度相关,因此你保留它们。

  • 包裹方法则会尝试不同的特征组合,比如“学习时间 + 上课出勤率”或“睡眠时间 + 饮食习惯”,然后看哪组特征让模型表现最好。

http://www.dtcms.com/a/334091.html

相关文章:

  • C++ 内存管理(内存分布 , 管理方式 , new和delete实现原理)
  • 前端开发入门书籍推荐:Vue.js 3与前端基础的完美组合
  • 在openEuler24.03 LTS上高效部署Apache2服务的完整指南
  • Vue3从入门到精通:5.2 Vue3构建工具与性能优化深度解析
  • InfluxDB 数据迁移工具:跨数据库同步方案(二)
  • 美国服务器环境下Windows容器工作负载智能弹性伸缩
  • NVIDIA ORIN AGX编译烧写镜像操作步骤
  • 集成运算放大器(反向比例,同相比例)
  • Hadoop面试题及详细答案 110题 (16-35)-- HDFS核心原理与操作
  • Spark Shuffle中的数据结构
  • 《MySQL 数据库备份与视图创建全流程:从数据迁移到高效查询实战》
  • MySQL 全文索引指南
  • 机器学习 [白板推导](十二)[卡曼滤波、粒子滤波]
  • flowable汇总查询方式
  • 计算机网络:(十五)TCP拥塞控制与拥塞控制算法深度剖析
  • MySQL的《Buffer-pool》和《连接池》介绍
  • Zotero 和 Zotero常见插件的安装
  • Vue组件生命周期钩子:深入理解组件的生命周期阶段
  • Qt— 布局综合项目(Splitter,Stacked,Dock)
  • 车载诊断架构 --- 怎么解决对已量产ECU增加具体DTC的快照信息?
  • Javar如何用RabbitMQ订单超时处理
  • 安卓11 12系统修改定制化_____修改运营商版本安装特定应用时的默认规则
  • 从依赖到自研:一个客服系统NLP能力的跃迁之路
  • ML307C 4G通信板:工业级DTU固件,多协议支持,智能配置管理
  • Boost.Asio学习(7):Boost.Beast实现简易http服务器
  • Rust学习笔记(四)|结构体与枚举(面向对象、模式匹配)
  • C++基础——内存管理
  • 基于Spring Boot 4s店车辆管理系统 租车管理系统 停车位管理系统 智慧车辆管理系统
  • 零知开源——基于STM32F407VET6的TCS230颜色识别器设计与实现
  • 开源数据发现平台:Amundsen Frontend Service 推荐实践