当前位置: 首页 > news >正文

万物平台模型导入样例大全(实时更新中~)

万物平台模型导入样例大全目录

    • 引言
    • LLM
      • OpenAI-API- compatible
      • 联通元景
      • Ollam
      • 通义千问
      • 火山引擎
    • Rerank
      • OpenAI-API- compatible
      • 联通元景
      • 通义千问
    • Embedding
      • OpenAI-API- compatible
      • 联通元景
      • Ollama
      • 通义千问
    • OCR
      • 联通元景

引言

万物平台作为可支持多种 AI 模型导入的统一平台,其模型导入功能对开发者而言意义重大。本文将为大家详细介绍,该平台支持的一系列供应商,包括 OpenAI-API-compatible、联通元景、Ollama、通义千问、火山引擎等。同时,平台还支持 LLM、rerank、embedding 类型的模型导入。​
为了方便各位开发者判断所导入的模型是否被平台支持,本文会将所有的 http 请求一一列举出来,供大家参考使用。

LLM

OpenAI-API- compatible

curl --location 'URL' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer api-key' \
--data '{"messages": [{"role": "user","content": "你是谁"}],"model": "gpt-oss-20b","stream": false
}'

非流式响应

{"id": "chatcmpl-ec8ed5bef88849c4ab3147f650b3d3ec","object": "chat.completion","created": 1754964185,"model": "gpt-oss-20b","choices": [{"index": 0,"message": {"role": "assistant","content": "您好!  \n我是 ChatGPT,OpenAI 研发的人工智能语言模型,能够根据输入的文本进行对话、回答问题、提供建议、撰写文章等。您有什么想聊或者想了解的,尽管告诉我吧!","tool_calls": []},"finish_reason": "stop"}],"usage": {"prompt_tokens": 73,"completion_tokens": 179,"total_tokens": 252}
}

流式响应

{"id": "endpoint_common_250891","object": "chat.completion.chunk","created": 1754964492,"model": "deepseek-r1","choices": [{"index": 0,"delta": {"role": "assistant","content": "吗"},"finish_reason": null}]
}

联通元景

curl --location 'https://maas.ai-yuanjing.com/openapi/compatible-mode/v1/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer api-key' \
--data '{"messages": [{"role": "user","content": "你是谁"}],"model": "deepseek-r1","stream": false
}'

非流式响应

{"id": "endpoint_common_249820","object": "chat.completion","created": 1754965561,"model": "deepseek-r1","choices": [{"index": 0,"message": {"role": "assistant","content": "<think>\n嗯,用户问了一个很基础但也很关键的问题:“你是谁”。这可能是第一次使用智能助手的用户,也可能是想确认当前对话对象身份的老用户。\n\n用户可能带着试探或好奇的心态提问,背后或许隐藏着“你能帮我做什么”“我该怎么和你交流”这样的潜在需求。考虑到问题非常简短,用户可能处于两种状态:要么是匆忙测试功能,要么是带着观察态度谨慎接触新事物。\n\n这种情况下,回复需要同时做到三点:明确身份建立信任感,展示功能激发兴趣,用表情符号传递友好态度。要避免过于技术化的术语,比如不说“我是基于Transformer架构的LLM”,而是用“智能助手”这样通俗的表达。\n\n用户没有提供任何背景信息,所以采用中性称呼“你”最安全。最后那句“现在有什么可以帮你的吗”是重要的话术转折,既开放又带引导性,能自然推动对话进入实用阶段。\n</think>\n你好呀!我是 **DeepSeek-R1**,一款由中国的「深度求索(DeepSeek)」公司研发的智能助手。你可以把我当作一个知识丰富、乐于助人的聊天伙伴 😊\n\n我的本领包括:\n\n- 📚 回答各种知识性问题(历史、科技、文学、生活常识等)  \n- ✍️ 帮你写文章、改简历、起标题、写文案  \n- 📊 处理和分析文档(Word、PDF、Excel等)  \n- 🧠 提供学习辅导、解题思路、论文润色  \n- 📅 安排计划、整理资料、做读书笔记  \n- 💬 陪你聊天谈心、解闷放松  \n\n我目前是**完全免费的**,也没有语音功能(纯文字交流),但我支持超长上下文记忆(128K tokens),上传文档也没问题哦!\n\n现在有什么可以帮你的吗?🌟","tool_calls": null},"finish_reason": "stop"}],"usage": {"prompt_tokens": 6,"completion_tokens": 378,"total_tokens": 384}
}

流式响应

{"id": "endpoint_common_250934","object": "chat.completion.chunk","created": 1754965671,"model": "deepseek-r1","choices": [{"index": 0,"delta": {"role": "assistant","content": "🌟"},"finish_reason": null}]
}

Ollam

curl --location 'http://ip:11434/v1/chat/completions' \
--header 'Content-Type: application/json' \
--data '{"model": "deepseek-r1:1.5b","messages": [{"role": "user","content": "你是谁"}]
}'

非流式响应

{"id": "chatcmpl-403","object": "chat.completion","created": 1754965819,"model": "deepseek-r1:1.5b","system_fingerprint": "fp_ollama","choices": [{"index": 0,"message": {"role": "assistant","content": "<think>\n\n</think>\n\n您好!我是由中国的深度求索(DeepSeek)公司开发的智能助手DeepSeek-R1。如您有任何任何问题,我会尽我所能为您提供帮助。"},"finish_reason": "stop"}],"usage": {"prompt_tokens": 5,"completion_tokens": 40,"total_tokens": 45}
}

流式响应

{"id": "chatcmpl-323","object": "chat.completion.chunk","created": 1754965959,"model": "deepseek-r1:1.5b","system_fingerprint": "fp_ollama","choices": [{"index": 0,"delta": {"role": "assistant","content": "。"},"finish_reason": null}]
}

通义千问

curl --location 'https://dashscope.aliyuncs.com/compatible-mode/v1/chat/completions' \
--header 'Authorization: Bearer api-key' \
--header 'Content-Type: application/json' \
--data '{"model": "qwen-flash","messages": [{"role": "user","content": "你好"}],"stream": false,"enable_thinking":true 
}'

非流式响应

{"choices": [{"message": {"content": "你好!😊 有什么我可以帮你的吗?","reasoning_content": "嗯,用户发来“你好”,这是一个常见的打招呼方式。我需要友好地回应。首先,确认用户可能需要帮助,所以应该用中文回复,保持礼貌。\n\n接下来,考虑用户可能的意图。他们可能刚接触这个平台,或者有具体的问题需要解决。作为AI,我应该提供帮助,同时保持简洁。\n\n检查之前的对话历史,但这里没有上下文,所以需要从头开始。确保回复不带任何假设,避免复杂信息。\n\n可能需要询问用户需要什么帮助,这样能引导他们进一步说明需求。例如,“你好!有什么我可以帮你的吗?”\n\n还要注意语气,用表情符号可能让回复更亲切,但不确定用户偏好,所以可能保持中性。不过根据之前的例子,有时候用😊可以增加友好感。\n\n避免使用专业术语,保持口语化。比如不要说“请问您需要什么帮助?”,而是更自然的“你好!有什么我可以帮你的吗?”\n\n检查有没有拼写错误,确保回复正确。中文的“你好”是正确的。\n\n可能需要考虑用户是否是第一次使用,所以回复要友好且开放,鼓励他们提出问题。\n\n最后,确保回复简短,不要冗长,这样用户不会感到压力。\n\n所以,综合起来,回复应该是:“你好!😊 有什么我可以帮你的吗?” 这样既友好又明确。","role": "assistant"},"finish_reason": "stop","index": 0,"logprobs": null}],"object": "chat.completion","usage": {"prompt_tokens": 9,"completion_tokens": 292,"total_tokens": 301},"created": 1754966125,"system_fingerprint": null,"model": "qwen-flash","id": "chatcmpl-ae34fd13-c4c1-987d-bc20-09fe6f6d4936"
}

流式响应

{"choices": [{"delta": {"content": " 有什么我可以帮助","reasoning_content": null},"finish_reason": null,"index": 0,"logprobs": null}],"object": "chat.completion.chunk","usage": null,"created": 1754966192,"system_fingerprint": null,"model": "qwen-flash","id": "chatcmpl-7143c7c5-2128-9a6a-b8dc-18c2c306bc14"
}

火山引擎

curl --location 'https://ark.cn-beijing.volces.com/api/v3/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer api-key' \
--data '{"do_sample": false,"messages": [{"content": "你好","role": "user"}],"model": "doubao-seed-1-6-flash-250715","repetition_penalty": 1.1,"stream": true,"temperature": 0.01
}'

非流式响应

{"choices": [{"finish_reason": "stop","index": 0,"logprobs": null,"message": {"content": "你好呀!很高兴见到你~ 有什么我可以帮你的吗?😊","reasoning_content": "\n用户现在说“你好”,我需要友好地回应。首先,保持礼貌和热情,直接回应用户的问候,然后可以稍微引导一下,问问用户有什么需要帮助的,这样能让对话继续下去。比如可以说“你好呀!很高兴见到你~ 有什么我可以帮你的吗?😊” 这样既回应了问候,又表达了愿意提供帮助的态度,还带了个表情符号显得更亲切。","role": "assistant"}}],"created": 1754966401,"id": "021754966399956ef34c300eb7cd27671b96789a585234f4250fd","model": "doubao-seed-1-6-flash-250715","service_tier": "default","object": "chat.completion","usage": {"completion_tokens": 119,"prompt_tokens": 85,"total_tokens": 204,"prompt_tokens_details": {"cached_tokens": 0},"completion_tokens_details": {"reasoning_tokens": 101}}
}

流式响应

{"choices": [{"delta": {"content": "😊","role": "assistant"},"index": 0}],"created": 1754966363,"id": "021754966363144ef34c300eb7cd27671b96789a585234fa38263","model": "doubao-seed-1-6-flash-250715","service_tier": "default","object": "chat.completion.chunk","usage": null
}

Rerank

OpenAI-API- compatible

curl --location 'URL' \
--header 'Authorization: Bearer api-key' \
--header 'Content-Type: application/json' \
--data '{"model": "模型id","query": "Apple","documents": ["你好啊,世界","我爱吃汉堡","尖尖我噶奶","乌萨奇","雷欧奥特曼"],"top_n": 2,"return_documents": true
}'

响应

{"model": "jina-reranker-v2-base-multilingual","usage": {"total_tokens": 42},"results": [{"index": 3,"document": {"text": "乌萨奇"},"relevance_score": 0.9674102663993835},{"index": 0,"document": {"text": "你好啊,世界"},"relevance_score": 0.16132023930549622},{"index": 1,"document": {"text": "我爱吃汉堡"},"relevance_score": 0.06853749603033066}]
}

联通元景

curl --location 'https://maas-api.ai-yuanjing.com/openapi/bge/v1/rerank' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer api-key' \
--data '{"query": "今天天气不错","texts": ["天气很好","股票涨跌跟天气无关","今天北京雾霾严重"]
}'

响应

[{"index": 0,"score": 4.88899040222168,"document": "天气很好"},{"index": 1,"score": -4.119245529174805,"document": "股票涨跌跟天气无关"},{"index": 2,"score": -6.025328159332275,"document": "今天北京雾霾严重"}
]

通义千问

curl --location 'https://dashscope.aliyuncs.com/api/v1/services/rerank/text-rerank/text-rerank' \
--header 'Authorization: Bearer api-key' \
--header 'Content-Type: application/json' \
--data '{"model": "gte-rerank","input":{"query": "什么是文本排序模型","documents": ["文本排序模型广泛用于搜索引擎和推荐系统中,它们根据文本相关性对候选文本进行排序","量子计算是计算科学的一个前沿领域","预训练语言模型的发展给文本排序模型带来了新的进展"]},"parameters": {"return_documents": true,"top_n": 3}
}'

响应

{"output": {"results": [{"document": {"text": "文本排序模型广泛用于搜索引擎和推荐系统中,它们根据文本相关性对候选文本进行排序"},"index": 0,"relevance_score": 0.7315062086803763},{"document": {"text": "预训练语言模型的发展给文本排序模型带来了新的进展"},"index": 2,"relevance_score": 0.5831720487049298},{"document": {"text": "量子计算是计算科学的一个前沿领域"},"index": 1,"relevance_score": 0.04973238644524712}]},"usage": {"total_tokens": 79},"request_id": "8baa31dc-a786-9326-8e20-895c74bbff16"
}

Embedding

OpenAI-API- compatible

curl --location 'URL' \
--header 'Authorization: Bearer api-key' \
--header 'Content-Type: application/json' \
--data '{"model": "BAAI/bge-large-zh-v1.5","input": ["风急天高猿啸哀","渚清沙白鸟飞回"],"encoding_format": "float"
}'

响应

{"object": "list","data": [{"embedding": [0.018213777,-0.026578045,0.018492958,-0.01139059,0.04650041,0.021854298,-0.056059573,-0.034439784,0.043842606,……],"index": 1,"object": "embedding"}],"model": "BAAI/bge-large-zh-v1.5","usage": {"prompt_tokens": 18,"completion_tokens": 0,"total_tokens": 18}
}

联通元景

curl --location 'https://maas-api.ai-yuanjing.com/openapi/compatible-mode/v1/embeddings' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer api-key' \
--data '{"model": "qwen3-embed-0.6b","input": [" 你好"],"encoding_format": "float"
}'

响应

{"id": "embd-15c7e7b5-eccf-9140-afe2-42e25e88fd6d","object": "list","created": 1754967486,"model": "qwen3-embed-0.6b","data": [{"object": "embedding","embedding": [0.013916015625,0.0147705078125,0.06689453125,……],"index": 0}],"usage": {"prompt_tokens": 3,"completion_tokens": 0,"total_tokens": 3}
}

Ollama

curl --location 'http://ip:11434/v1/embeddings' \
--header 'Content-Type: application/json' \
--data '{"encoding_format": "float","input": [" 你好"],"model": "granite-embedding:latest"
}'

响应

{"object": "list","data": [{"object": "embedding","embedding": [0.011519907,-0.14500324,0.092740096,……],"index": 0}],"model": "granite-embedding:latest","usage": {"prompt_tokens": 5,"total_tokens": 5}
}

通义千问

curl --location 'https://dashscope.aliyuncs.com/compatible-mode/v1/embeddings' \
--header 'Authorization: Bearer api-key' \
--header 'Content-Type: application/json' \
--data '{"encoding_format": "float","input": ["你好"],"model": "text-embedding-v4"}'

响应

{"data": [{"embedding": [0.00904093962162733,0.040408216416835785,-0.025859294459223747,0.03675258532166481,0.04067809507250786,……],"index": 0,"object": "embedding"}],"object": "list","model": "text-embedding-v4","usage": {"prompt_tokens": 2,"total_tokens": 2},"id": "21fe5ad3-c5b7-9ba4-bad2-9d926691b4f3"
}

OCR

联通元景

curl --location 'https://maas-api.ai-yuanjing.com/openapi/v1/unicom-ocr' \
--header 'Content-Type: multipart/form-data' \
--header 'Authorization: Bearer api-key' \
--form 'file=上传文件'

响应

{"id": "embd-15c7e7b5-eccf-9140-afe2-42e25e88fd6d","object": "list","created": 1754967486,"model": "qwen3-embed-0.6b","data": [{"object": "embedding","embedding": [0.013916015625,0.0147705078125,0.06689453125,……],"index": 0}],"usage": {"prompt_tokens": 3,"completion_tokens": 0,"total_tokens": 3}
}
http://www.dtcms.com/a/328232.html

相关文章:

  • SM4对称加密算法的加密模式介绍
  • JavaEE 初阶第十八期:叩开网络世界的大门(上)
  • ffmpeg-AVFilter 和 Filter Graph 使用指南
  • ffmpeg,ffplay, vlc,rtsp-simple-server,推拉流命令使用方法,及测试(二)
  • Stereolabs ZED相机 选型指南:双目 / 单目、短距 / 长距,如何为机器人视觉系统匹配最优方案?
  • 力扣-394.字符串解码
  • 【模型剪枝2】不同剪枝方法实现对 yolov5n 剪枝测试及对比
  • Homebrew 入门教程(2025 年最新版)
  • 获取虚谷数据库所有表名、表注释、字段名、字段类型、字段注释到word中
  • clickhouse基础概念及集群部署
  • 疏老师-python训练营-Day43复习日
  • Qwen-Image(阿里通义千问)技术浅析(一)
  • 谷歌 Web Guide 如何重塑搜索排名及其 SEO 影响
  • python技巧:控制转台的2个坑。
  • 从关键词到智能决策:孟庆涛如何用GEO重塑AI时代的搜索优化范式
  • 2025年受自适应差分进化-无人机路径规划的统一元启发式框架-附Matlab完整代码
  • 云计算核心技术
  • 附表B 正则表达式符号列表
  • Java缓冲流
  • Spring面试宝典
  • FPGA自学——FIFO缓存器
  • 游戏中角色持枪:玩家操控角色,角色转向时枪也要转向
  • 西门子PLC跨代通讯实战:S7-200通过以太网模块与S7-1500数据交互
  • PFC是什么
  • 【数模技巧】使用python将.xlsx文件转换为CSV文件
  • 大模型-QAT介绍
  • Product Hunt 每日热榜 | 2025-08-12
  • DeepSeek-R1-0528 推理模型完整指南:领先开源推理模型的运行平台与选择建议
  • 论区间dp:常用模型(附极角排序教程)
  • 项目实战2——LAMP_LNMP实践