actuary notes[2]
文章目录
- event
- references
event
- let A={x∣x被2整除,x∈N+}A=\{x| x被2整除,x \in \mathbb{N^+}\}A={x∣x被2整除,x∈N+},A′={x∣x不能被2整除,x∈N+}A'=\{x| x不能被2整除,x \in \mathbb{N^+}\}A′={x∣x不能被2整除,x∈N+},so A′A'A′ can be called as the inverse (opposite) event of AAA.
- at least one of the events AAA and A′A'A′ will certainly happen , so that is A∪A′A\cup A'A∪A′.in the same way, the A1,A2,.....A_1,A_2,.....A1,A2,..... events have one or more than one will definitely appear,that is A1∪A2∪.....A_1\cup A_2\cup.....A1∪A2∪..... .
- if both of AAA and A′A'A′ occur ,then that situation can be called as A∩A′A\cap A'A∩A′.in a similar way, the A1∩A2∩.....A_1\cap A_2\cap.....A1∩A2∩..... represents those event such as A1,A2,.....A_1,A_2,.....A1,A2,..... all happen.
for example, there are a great deal of corn kernels on a table,you take out some cof them for cooking, let A1={x∣x≥10}A_1=\{x|x \ge10\}A1={x∣x≥10},A2={x∣x≤50}A_2=\{x|x \le 50\}A2={x∣x≤50},A3={x∣x是偶数}A_3=\{x|x 是偶数\}A3={x∣x是偶数},the A′=A1∩A2∩A3=A1A2A3A'=A_1\cap A_2\cap A_3=A_1A_2A_3A′=A1∩A2∩A3=A1A2A3 reports the fact that the number of corn kernels you token from the table between 10 and 50 and will be divisible by 2. - as similar as sets,two events such as AAA and A′A'A′ have substraction operation that A−A′A-A'A−A′,for example, let A1={x∣x≤30}A_1=\{x|x \le 30\}A1={x∣x≤30},A2={x∣x≤50}A_2=\{x|x \le 50\}A2={x∣x≤50},the A2−A1={x∣x≤50,x>30}A_2-A_1=\{x|x \le 50,x > 30\}A2−A1={x∣x≤50,x>30}.
- if the two AAA and A′A'A′ events never happen concurrently, then they can be called as incompatible events,such as A={x∣x是偶数}A=\{x|x 是偶数\}A={x∣x是偶数} and A′={x∣x是奇数}A'=\{x|x 是奇数\}A′={x∣x是奇数}.
- In probability theory, the operations on events (subsets of a sample space) follow specific algebraic rules similar to set theory. Here are the fundamental laws:
1. Commutative Laws
- Union: A∪B=B∪AA \cup B = B \cup AA∪B=B∪A
- Intersection:A∩B=B∩AA \cap B = B \cap AA∩B=B∩A
2. Associative Laws
- Union: (A∪B)∪C=A∪(B∪C)(A \cup B) \cup C = A \cup (B \cup C)(A∪B)∪C=A∪(B∪C)
- Intersection: (A∩B)∩C=A∩(B∩C)(A \cap B) \cap C = A \cap (B \cap C)(A∩B)∩C=A∩(B∩C)
3. Distributive Laws
- Union over Intersection:
A∪(B∩C)=(A∪B)∩(A∪C)A \cup (B \cap C) = (A \cup B) \cap (A \cup C) A∪(B∩C)=(A∪B)∩(A∪C) - Intersection over Union:
A∩(B∪C)=(A∩B)∪(A∩C)A \cap (B \cup C) = (A \cap B) \cup (A \cap C) A∩(B∪C)=(A∩B)∪(A∩C)
4. De Morgan’s Laws (Duality Laws)
- Complement of Union:
(A∪B)c=Ac∩Bc(A \cup B)^c = A^c \cap B^c (A∪B)c=Ac∩Bc - Complement of Intersection:
(A∩B)c=Ac∪Bc(A \cap B)^c = A^c \cup B^c (A∩B)c=Ac∪Bc
5. Idempotent Laws
- Union: A∪A=AA \cup A = AA∪A=A
- Intersection: A∩A=AA \cap A = AA∩A=A
6. Absorption Laws
- Union Absorption: A∪(A∩B)=AA \cup (A \cap B) = AA∪(A∩B)=A
- Intersection Absorption: A∩(A∪B)=AA \cap (A \cup B) = AA∩(A∪B)=A
7. Complement Laws
- Double Negation: (Ac)c=A(A^c)^c = A(Ac)c=A
- Universal & Empty Set:
Sc=∅,∅c=SS^c = \emptyset, \quad \emptyset^c = S Sc=∅,∅c=S - Union with Universal Set: A∪S=SA \cup S = SA∪S=S
- Intersection with Empty Set: A∩∅=∅A \cap \emptyset = \emptysetA∩∅=∅
8. Other Properties
- Set Difference:
A∖B=A∩BcA \setminus B = A \cap B^c A∖B=A∩Bc - Symmetric Difference:
AΔB=(A∖B)∪(B∖A)A \Delta B = (A \setminus B) \cup (B \setminus A) AΔB=(A∖B)∪(B∖A)
references
- 《数学》