当前位置: 首页 > news >正文

actuary notes[2]

文章目录

  • event
  • references

event

  1. let A={x∣x被2整除,x∈N+}A=\{x| x被2整除,x \in \mathbb{N^+}\}A={xx2整除,xN+},A′={x∣x不能被2整除,x∈N+}A'=\{x| x不能被2整除,x \in \mathbb{N^+}\}A={xx不能被2整除,xN+},so A′A'A can be called as the inverse (opposite) event of AAA.
  2. at least one of the events AAA and A′A'A will certainly happen , so that is A∪A′A\cup A'AA.in the same way, the A1,A2,.....A_1,A_2,.....A1,A2,..... events have one or more than one will definitely appear,that is A1∪A2∪.....A_1\cup A_2\cup.....A1A2..... .
  3. if both of AAA and A′A'A occur ,then that situation can be called as A∩A′A\cap A'AA.in a similar way, the A1∩A2∩.....A_1\cap A_2\cap.....A1A2..... represents those event such as A1,A2,.....A_1,A_2,.....A1,A2,..... all happen.
    for example, there are a great deal of corn kernels on a table,you take out some cof them for cooking, let A1={x∣x≥10}A_1=\{x|x \ge10\}A1={xx10},A2={x∣x≤50}A_2=\{x|x \le 50\}A2={xx50},A3={x∣x是偶数}A_3=\{x|x 是偶数\}A3={xx是偶数},the A′=A1∩A2∩A3=A1A2A3A'=A_1\cap A_2\cap A_3=A_1A_2A_3A=A1A2A3=A1A2A3 reports the fact that the number of corn kernels you token from the table between 10 and 50 and will be divisible by 2.
  4. as similar as sets,two events such as AAA and A′A'A have substraction operation that A−A′A-A'AA,for example, let A1={x∣x≤30}A_1=\{x|x \le 30\}A1={xx30},A2={x∣x≤50}A_2=\{x|x \le 50\}A2={xx50},the A2−A1={x∣x≤50,x>30}A_2-A_1=\{x|x \le 50,x > 30\}A2A1={xx50,x>30}.
  5. if the two AAA and A′A'A events never happen concurrently, then they can be called as incompatible events,such as A={x∣x是偶数}A=\{x|x 是偶数\}A={xx是偶数} and A′={x∣x是奇数}A'=\{x|x 是奇数\}A={xx是奇数}.
  6. In probability theory, the operations on events (subsets of a sample space) follow specific algebraic rules similar to set theory. Here are the fundamental laws:

1. Commutative Laws

  • Union: A∪B=B∪AA \cup B = B \cup AAB=BA
  • Intersection:A∩B=B∩AA \cap B = B \cap AAB=BA

2. Associative Laws

  • Union: (A∪B)∪C=A∪(B∪C)(A \cup B) \cup C = A \cup (B \cup C)(AB)C=A(BC)
  • Intersection: (A∩B)∩C=A∩(B∩C)(A \cap B) \cap C = A \cap (B \cap C)(AB)C=A(BC)

3. Distributive Laws

  • Union over Intersection:
    A∪(B∩C)=(A∪B)∩(A∪C)A \cup (B \cap C) = (A \cup B) \cap (A \cup C) A(BC)=(AB)(AC)
  • Intersection over Union:
    A∩(B∪C)=(A∩B)∪(A∩C)A \cap (B \cup C) = (A \cap B) \cup (A \cap C) A(BC)=(AB)(AC)

4. De Morgan’s Laws (Duality Laws)

  • Complement of Union:
    (A∪B)c=Ac∩Bc(A \cup B)^c = A^c \cap B^c (AB)c=AcBc
  • Complement of Intersection:
    (A∩B)c=Ac∪Bc(A \cap B)^c = A^c \cup B^c (AB)c=AcBc

5. Idempotent Laws

  • Union: A∪A=AA \cup A = AAA=A
  • Intersection: A∩A=AA \cap A = AAA=A

6. Absorption Laws

  • Union Absorption: A∪(A∩B)=AA \cup (A \cap B) = AA(AB)=A
  • Intersection Absorption: A∩(A∪B)=AA \cap (A \cup B) = AA(AB)=A

7. Complement Laws

  • Double Negation: (Ac)c=A(A^c)^c = A(Ac)c=A
  • Universal & Empty Set:
    Sc=∅,∅c=SS^c = \emptyset, \quad \emptyset^c = S Sc=,c=S
  • Union with Universal Set: A∪S=SA \cup S = SAS=S
  • Intersection with Empty Set: A∩∅=∅A \cap \emptyset = \emptysetA=

8. Other Properties

  • Set Difference:
    A∖B=A∩BcA \setminus B = A \cap B^c AB=ABc
  • Symmetric Difference:
    AΔB=(A∖B)∪(B∖A)A \Delta B = (A \setminus B) \cup (B \setminus A) AΔB=(AB)(BA)

references

  1. 《数学》
http://www.dtcms.com/a/324352.html

相关文章:

  • 单调栈——数位删减
  • Go语言中切片(Slice)的拷贝
  • 自创论述类文本阅读:论温泉
  • PWM波的频谱分析及matlab 验证[电路原理]
  • 【Linux】使用静态 BusyBox 解决操作系统“塌方”问题
  • Premiere准备工作
  • AQS的详细讲解
  • Java对接支付宝,回调验签失败
  • 活动策划(展会、年会),在线工具能快速出邀请函不?
  • [创业之路-537]:经营分析会 - 销售目标以及支撑、关键策略、主要行动措施、资源保障、人才储备
  • 在 JDK 17 上完整观察 synchronized 锁升级过
  • 嵌入式第二十四课!!linux应用软件编程与文件操作!!!
  • Java 基础编程案例:斐波拉契数与从输入交互到逻辑处理
  • NodeJs学习日志(4):路由合并_环境配置_常用文件目录
  • HarmonyOS之module.json5功能详解
  • AI测试助手如何让Bug无处可藏
  • 湖南(源点咨询)市场调研 如何在行业研究中快速有效介入 中篇
  • 深入浅出DBSCAN:基于密度的聚类算法详解与Python实战
  • github上传文件
  • Navicat 无限适用
  • Tesseract训练个人字库操提高准确率操作全流程(详细)
  • 新手向:Python制作简易音乐播放器
  • Python中的 __name__
  • 遇到前端导出 Excel 文件出现乱码或文件损坏的问题
  • 异或循环冗余
  • Python设计模式 - 装饰模式
  • 新手向:Python实现文件加密解密工具
  • 旅行者1号无线电工作频段
  • 18.3 全量微调:数据预处理之清洗与准备
  • 机器学习——DBSCAN 聚类算法 + 标准化