当前位置: 首页 > news >正文

【新手向】PyTorch常用Tensor shape变换方法

【新手向】PyTorch常用Tensor shape变换方法

前言

B站UP主科研水神大队长的视频中介绍了“缝合模块”大法,其中专门强调了“深度学习 玩的就是shape”。受此启发,专门整理能够调整tensor形状的几个内置函数,方便以后更好地调整PyTorch代码中的模型结构。

squeeze, unsqueeze

  • torch.squeeze()
  • torch.unsqueeze()

squeeze()用于压缩掉指定的维度,这个维度的取值必须是1,否则无效。unsqueeze()用于在指定的位置增加一个维度。

代码实例:

import torch# image
x1 = torch.ones([4, 3, 256, 256]) # batch_size, channels, height, width
print("x1.shape:", x1.shape) # x1.shape: torch.Size([4, 3, 256, 256])x2 = torch.ones([1, 1, 3])
print("x2.shape:", x2.shape) # x2.shape: torch.Size([1, 1, 3])y1 = x1.squeeze(0)
print("y1.shape:", y1.shape) # y1.shape: torch.Size([4, 3, 256, 256])y2 = x2.squeeze(0)
print("y2.shape:", y2.shape) # y2.shape: torch.Size([1, 3])y6 = x2.squeeze(1)
print("y6.shape:", y6.shape) # y6.shape: torch.Size([1, 3])y7 = x2.squeeze(-1)
print("y7.shape:", y7.shape) # y7.shape: torch.Size([1, 1, 3])y3 = x1.unsqueeze(0)
print("y3.shape:", y3.shape) # y3.shape: torch.Size([1, 4, 3, 256, 256])y4 = x1.unsqueeze(1)
print("y4.shape:", y4.shape) # y4.shape: torch.Size([4, 1, 3, 256, 256])y5 = x1.unsqueeze(-1)
print("y5.shape:", y5.shape) # y5.shape: torch.Size([4, 3, 256, 256, 1])

transpose

transpose()用于调整tensor的维度顺序,在计算机视觉的任务中经常需要调整通道顺序,比如有的模型输出的顺序是(channel, height, width),而有的输出顺序是(height, width, channel),需要通过调换顺序来匹配输入输出。

transpose()有两种用法:

  • torch.transpose()
  • x.transpose()

代码实例:

import torchx1 = torch.ones([4, 3, 256, 256]) # batch_size, channels, height, width
print("x1.shape:", x1.shape) # x1.shape: torch.Size([4, 3, 256, 256])x2 = torch.ones([1, 1, 3])
print("x2.shape:", x2.shape) # x2.shape: torch.Size([1, 1, 3])trans1 = torch.transpose(x1, 0, 1)
print("trans1.shape:", trans1.shape) # trans1.shape: torch.Size([3, 4, 256, 256])trans2 = torch.transpose(x2, 1, 2)
print("trans2.shape:", trans2.shape) # trans2.shape: torch.Size([1, 3, 1])trans3 = x1.transpose(0, 1)
print("trans3.shape:", trans3.shape) # trans3.shape: torch.Size([3, 4, 256, 256])

reshape

reshape()能够在总元素数量不产生变化的前提下改变tensor的形状。它也可以用于处理numpy array的形状。

代码实例:

import torch
import numpy as npx3 = torch.Tensor([1, 2, 3, 4, 5, 6])
print("x3.shape:", x3.shape) # x3.shape: torch.Size([6])reshape1 = x3.reshape(2, 3)
print("reshape1.shape:", reshape1.shape) # reshape1.shape: torch.Size([2, 3])x4 = torch.ones([4, 4, 3, 256, 256])
print("x4.shape:", x4.shape) # x4.shape: torch.Size([4, 4, 3, 256, 256])reshape2 = x4.reshape(4*4, 3, 256, 256)
print("reshape2.shape:", reshape2.shape) # reshape2.shape: torch.Size([16, 3, 256, 256])x5 = np.array([1, 2, 3, 4, 5, 6])
print("x5.shape:", x5.shape) # x5.shape: (6,)reshape3 = x5.reshape(2, 3)
print("reshape3.shape:", reshape3.shape) # reshape3.shape: (2, 3)

view

view()的作用与reshape()的作用相似,也是在总元素数量不产生变化的前提下改变形状,但view()只能对张量进行操作。

代码实例:

import torchx3 = torch.Tensor([1, 2, 3, 4, 5, 6])
print("x3.shape:", x3.shape) # x3.shape: torch.Size([6])view1 = x3.view(2, 3)
print("view1.shape:", view1.shape) # view1.shape: torch.Size([2, 3])
print("view1:", view1)
# view1: tensor([[1., 2., 3.],
#         [4., 5., 6.]])view2 = x3.view(3, 2)
print("view2.shape:", view2.shape) # view2.shape: torch.Size([3, 2])
print("view2:", view2) 
# view2: tensor([[1., 2.],
#         [3., 4.],
#         [5., 6.]])

permute

permute()用于调整维度的顺序。与transpose()一次仅能“对调”两个维度的顺序不同,permute()可以一次调整多个维度的顺序。

代码实例:

import torchx4 = torch.ones([4, 4, 3, 256, 256])
print("x4.shape:", x4.shape) # x4.shape: torch.Size([4, 4, 3, 256, 256])permute1 = x4.permute(1, 3, 4, 0, 2)
print("permute1.shape:", permute1.shape) # permute1.shape: torch.Size([4, 256, 256, 4, 3])
http://www.dtcms.com/a/288664.html

相关文章:

  • 零基础学习性能测试第二章-linux/jvm/mysql等数据收集环境搭建
  • Golang基础语法-数据类型
  • Go语言--语法基础6--基本数据类型--map类型
  • Java学习第六十部分——JVM
  • An End-to-End Attention-Based Approach for Learning on Graphs NC 2025
  • 04 51单片机之数码管显示
  • Shell脚本-uniq工具
  • 两个路由器通过不同的网段互联
  • 从TPACK到TPACK - AI:人工智能时代教师知识框架的重构与验证
  • EPLAN 电气制图(十): 继电器控制回路绘制(下)放料、放灰
  • 基于单片机的IC卡门禁系统设计
  • 最大子数组和问题-详解Kadane算法
  • 每日一题7.20
  • OSS文件上传(一):简单上传
  • feignClient 调用详细流程
  • Valgrind Memcheck 全解析教程:6个程序说明基础内存错误
  • 判断一个数是否为质数方法
  • VSCode使用Jupyter完整指南配置机器学习环境
  • c#:TCP服务端管理类
  • 正点原子stm32F407学习笔记10——输入捕获实验
  • 2025 年科技革命时刻表:四大关键节点将如何重塑未来?
  • 内网后渗透攻击过程(实验环境)--3、横向攻击
  • SQL 调优第一步:EXPLAIN 关键字全解析
  • 【已解决】GitHub SSH 连接失败解决方案:Permission Denied (publickey) 错误修复指南
  • [Linux]进程 / PID
  • 30天打牢数模基础-决策树讲解
  • Linux入门篇学习——NFS 服务器的搭建和使用和开发板固件烧录
  • Spring Boot 第一天知识汇总
  • 【Java项目安全基石】登录认证实战:Session/Token/JWT用户校验机制深度解析
  • 相似度计算