当前位置: 首页 > news >正文

CUDA —— 1.1、C++与CUDA混合编程,C++调用cuda自定义类进行运算操作(附:Windows下Vs2017编程环境配置)

运行效果

     由于cuda进行运算是非常快的。本文介绍通过C++调用自定义的cuda类接口,将耗时运算操作交由cuda进行计算。

在这里插入图片描述


正问

     1、打开vs2017,创建C++空项目,并创建main.cpp写入部分代码

在这里插入图片描述
在这里插入图片描述

     2、创建cuda文件与头文件

          (1)、右键项目名称 - 添加 - 新建项 - Visual C++,分两次分别创建"CUDA 11.4 C/C++ File"与"CUDA 11.4 C/C++ Header"

在这里插入图片描述

          (2)、将如下代码分别写入3个代码文件

               main.cpp

#include <iostream>#include "main.cuh"int main()
{CudaTest TEST;TEST.RunCalc();system("pause");return 0;
}

               CudaTest.cuh

#ifndef MAIN_CUH
#define MAIN_CUH#include "cuda_runtime.h"
#include "device_launch_parameters.h"#include <stdio.h>class CudaTest
{
public:CudaTest();int RunCalc();
};#endif

               CudaTest.cu


#include "main.cuh"#include <Windows.h>CudaTest::CudaTest()
{}cudaError_t addWithCuda(int *c, const int *a, const int *b, unsigned int size);__global__ void addKernel(int *c, const int *a, const int *b)
{int i = threadIdx.x;c[i] = a[i] + b[i];
}int CudaTest::RunCalc()
{const int arraySize = 5;const int a[arraySize] = { 1, 2, 3, 4, 5 };const int b[arraySize] = { 10, 20, 30, 40, 50 };int c[arraySize] = { 0 };cudaError_t cudaStatus = cudaSuccess;for (unsigned short index = 0; index < 3000; ++index){// Add vectors in parallel.cudaStatus = addWithCuda(c, a, b, arraySize);if (cudaStatus != cudaSuccess) { fprintf(stderr, "addWithCuda failed!"); return 1; }printf("%d --- {1,2,3,4,5} + {10,20,30,40,50} = {%d,%d,%d,%d,%d}\n", index,c[0], c[1], c[2], c[3], c[4]);Sleep(1);}// cudaDeviceReset must be called before exiting in order for profiling and// tracing tools such as Nsight and Visual Profiler to show complete traces.cudaStatus = cudaDeviceReset();if (cudaStatus != cudaSuccess) { fprintf(stderr, "cudaDeviceReset failed!"); return 1; }return 0;
}// Helper function for using CUDA to add vectors in parallel.
cudaError_t addWithCuda(int *c, const int *a, const int *b, unsigned int size)
{int *dev_a = 0;int *dev_b = 0;int *dev_c = 0;cudaError_t cudaStatus;// Choose which GPU to run on, change this on a multi-GPU system.cudaStatus = cudaSetDevice(0);if (cudaStatus != cudaSuccess) {fprintf(stderr, "cudaSetDevice failed!  Do you have a CUDA-capable GPU installed?");goto Error;}// Allocate GPU buffers for three vectors (two input, one output)    .cudaStatus = cudaMalloc((void**)&dev_c, size * sizeof(int));if (cudaStatus != cudaSuccess) {fprintf(stderr, "cudaMalloc failed!");goto Error;}cudaStatus = cudaMalloc((void**)&dev_a, size * sizeof(int));if (cudaStatus != cudaSuccess) {fprintf(stderr, "cudaMalloc failed!");goto Error;}cudaStatus = cudaMalloc((void**)&dev_b, size * sizeof(int));if (cudaStatus != cudaSuccess) {fprintf(stderr, "cudaMalloc failed!");goto Error;}// Copy input vectors from host memory to GPU buffers.cudaStatus = cudaMemcpy(dev_a, a, size * sizeof(int), cudaMemcpyHostToDevice);if (cudaStatus != cudaSuccess) {fprintf(stderr, "cudaMemcpy failed!");goto Error;}cudaStatus = cudaMemcpy(dev_b, b, size * sizeof(int), cudaMemcpyHostToDevice);if (cudaStatus != cudaSuccess) {fprintf(stderr, "cudaMemcpy failed!");goto Error;}// Launch a kernel on the GPU with one thread for each element.addKernel << <1, size >> > (dev_c, dev_a, dev_b);// Check for any errors launching the kernelcudaStatus = cudaGetLastError();if (cudaStatus != cudaSuccess) {fprintf(stderr, "addKernel launch failed: %s\n", cudaGetErrorString(cudaStatus));goto Error;}// cudaDeviceSynchronize waits for the kernel to finish, and returns// any errors encountered during the launch.cudaStatus = cudaDeviceSynchronize();if (cudaStatus != cudaSuccess) {fprintf(stderr, "cudaDeviceSynchronize returned error code %d after launching addKernel!\n", cudaStatus);goto Error;}// Copy output vector from GPU buffer to host memory.cudaStatus = cudaMemcpy(c, dev_c, size * sizeof(int), cudaMemcpyDeviceToHost);if (cudaStatus != cudaSuccess) {fprintf(stderr, "cudaMemcpy failed!");goto Error;}Error:cudaFree(dev_c);cudaFree(dev_a);cudaFree(dev_b);return cudaStatus;
}


     3、【重要】工程配置修改,用以识别支持CUDA

          3.1、右键项目名称 - 生成依赖项 - 生成自定义 - 勾选CUDA 11.4

在这里插入图片描述

          3.2、分别右键.cu与.cuh文件,选择: 属性 - 配置属性 - 常规 - 项类型 - 选择"CUDA C/C++"

在这里插入图片描述


          3.3、工具 - 选项 - 文本编辑器 - 文件扩展名,添加cu和cuh两个文件拓展名

在这里插入图片描述


     4、项目配置cuda头文件/库(其实若按照 前篇文章 配置环境变量后,则此第4步骤可不做)

          4.1、【加入头文件】具体如下图加入cuda头文件

在这里插入图片描述

          4.2、【加入库文件】具体如下两图加入cuda库路径及文件

在这里插入图片描述
在这里插入图片描述


     5、编译运行

在这里插入图片描述

关注

笔者 - 东旭

相关文章:

  • 网站设计费用明细网络营销渠道有哪些
  • 微信开发哪家公司好河池网站seo
  • 苏州网络推广苏州网站建设郑州seo服务公司
  • 哈尔滨网页模板建站独立网站怎么做
  • 对软件开发的理解和认识百度网站快速优化
  • 北京vi设计公司广州标志设计石家庄seo外包的公司
  • 怎么把本地仓库push 到gitlab 上
  • GitLab 18.1 发布 Runner、无效的个人访问令牌查看等功能,可升级体验!
  • Unity AR构建维护系统的以AI驱动增强现实知识检索系统
  • [C#]C# winform部署yolov13目标检测的onnx模型
  • VTK中的形态学处理
  • Pytest项目_day03(Postman使用)
  • # RK3588 Linux SDK 完整问题解决记录-编译内核头文件
  • React:利用计算属性名特点更新表单值
  • 鸿蒙边缘智能计算架构实战:从环境部署到分布式推理全流程
  • flutter的包管理#资源管理#调试Flutter应用#Flutter异常捕获
  • 龙蜥Confidential AI:开源机密计算AI解决方案,让云端模型安全运行
  • 推荐一个前端基于vue3.x,vite7.x,后端基于springboot3.4.x的完全开源的前后端分离的中后台管理系统基础项目(纯净版)
  • R语言使用nonrandom包进行倾向评分匹配
  • Golang中的map使用
  • Vue 2 项目中内嵌 md 文件
  • OpenCV计算机视觉实战(13)——轮廓检测详解
  • C++ - vector 的相关练习
  • AMS流媒体服务器-新版(h265-flv)
  • Spring--IOC容器的启动流程图解版
  • 大数据在UI前端的应用深化研究:用户行为模式的挖掘与分析