3D Gaussian Splatting算法安装与实测
目录
简介
1 概要和依赖
2 实际安装测试
拉取代码
CUDA环境对安装的影响
单独安装pytorch的命令
3 使⽤⾃⼰的数据调⽤算法
colmap安装
训练
交互式可视化
简介
论⽂:3D Gaussian Splatting for Real-Time Radiance Field Rendering
项⽬地址: https://github.com/graphdeco-inria/gaussian-splatting
1 概要和依赖
如果在Windows⽤,有视频逐步骤指导,参考 youtube视频链接
本⽂档后续内容都是建⽴在Ubuntu上进⾏使⽤的
下⾯内容都摘⾃README.md,纯英⽂,我们在第⼆节将展⽰实测安装算法遇到的问题和全流程
1.1 Codebase
The codebase has 4 main components:
•
A PyTorch-based optimizer to produce a 3D Gaussian model from SfM inputs
•
A network viewer that allows to connect to and visualize the optimization process
•
An OpenGL-based real-time viewer to render trained models in real-time.
•
A script to help you turn your own images into optimization-ready SfM data sets
The components have different requirements w.r.t. both hardware and software. They have
been tested on Windows 10 and Ubuntu Linux 22.04. Instructions for setting up and running
each of them are found in the sections below.
作者只在Ubuntu 22.04做了测试;实际我们在Ubuntu 18.04和20.04进⾏了测试
在Ubuntu18.04可以完成训练,但⽆法可视化;Ubuntu20.04可以可视化
1.3 Software Requirements
•
Conda (recommended for easy setup)
•
C++ Compiler for PyTorch extensions (we used Visual Studio 2019 for Windows)
•
CUDA SDK 11 for PyTorch extensions, install after Visual Studio (we used 11.8, known issues
with 11.6)
•
C++ Compiler and CUDA SDK must be compatible
CUDA 11.8很重要
关于Conda环境:
Conda环境(相⽐Miniconda,更推荐Anaconda)安装参考链接:
【精选】Ubuntu:conda的安装与使⽤_乌班图使⽤conda-CSDN博客
Anaconda | The World’s Most Popular Data Science Platform
2 实际安装测试
拉取代码
使⽤--recursive把submodules给全部拉取下来,这个很重要;不加的话,后续有的东西装不上
git clone git@github.com:graphdeco-inria/gaussian-splatting.git --recursive
git clone https://github.com/graphdeco-inria/gaussian-splatting --recursive
如果submodule安装失败,可能出现以下报错 <