当前位置: 首页 > news >正文

Ubuntu 22.04离线安装Docker和NVIDIA Container Toolkit(使用gpu)

参考链接:https://zhuanlan.zhihu.com/p/15194336245

注意:/sbin/ldconfig.real: /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8 is not a symbolic link这里不是报错的意思,只是警告,这里其实已经安装成功了,用nvidia-ctk --version命令检查若输出版本号就成功安装了。

二、离线安装NVIDIA Container Toolkit

1. 在NVIDIA的GitHub主页找到Ubuntu系统对应的NVIDIA Container Toolkit安装包

该页面的安装包较多,搜索关键词“1.14.1”,下载所有含有“1.14.1”的安装包,安装包的说明如下:

libnvidia-container1_1.14.1-1_amd64.deb           # 基础库包,提供了最基本的功能,其他包都依赖于它
libnvidia-container-tools_1.14.1-1_amd64.deb      # 基础工具包,依赖于 libnvidia-container1
nvidia-container-toolkit-base_1.14.1-1_amd64.deb  # 基础组件包,依赖于前面的包
nvidia-container-toolkit_1.14.1-1_amd64.deb       # 主要的工具包,依赖于以上所有包
libnvidia-container1-dbg_1.14.1-1_amd64.deb       # 调试符号包,只在调试问题时使用
libnvidia-container-dev_1.14.1-1_amd64.deb        # 开发包,只在进行开发时使用

其中最后两个安装包可以选择不下载和不安装

2. 执行下列命令安装NVIDIA Container Toolkit:

安装上面6个deb文件 

sudo dpkg *.deb

3. 查看NVIDIA Container Toolkit的版本以验证是否安装成功

nvidia-ctk --version

4. 设置Docker默认使用NVIDIA runtime

sudo nvidia-ctk runtime configure --runtime=docker

 复现结果:

(base) gpu@gpu01:~/dockerdir/nvidia-toolkit/install1.14$ sudo dpkg -i *.deb
(Reading database ... 220709 files and directories currently installed.)
Preparing to unpack libnvidia-container1_1.14.1-1_amd64.deb ...
Unpacking libnvidia-container1:amd64 (1.14.1-1) over (1.12.0-1) ...
Selecting previously unselected package libnvidia-container1-dbg:amd64.
Preparing to unpack libnvidia-container1-dbg_1.14.1-1_amd64.deb ...
Unpacking libnvidia-container1-dbg:amd64 (1.14.1-1) ...
Selecting previously unselected package libnvidia-container-dev:amd64.
Preparing to unpack libnvidia-container-dev_1.14.1-1_amd64.deb ...
Unpacking libnvidia-container-dev:amd64 (1.14.1-1) ...
Preparing to unpack libnvidia-container-tools_1.14.1-1_amd64.deb ...
Unpacking libnvidia-container-tools (1.14.1-1) over (1.12.0-1) ...
dpkg: warning: downgrading nvidia-container-toolkit from 1.17.8-1 to 1.14.1-1
Preparing to unpack nvidia-container-toolkit_1.14.1-1_amd64.deb ...
Unpacking nvidia-container-toolkit (1.14.1-1) over (1.17.8-1) ...
Preparing to unpack nvidia-container-toolkit-base_1.14.1-1_amd64.deb ...
Unpacking nvidia-container-toolkit-base (1.14.1-1) over (1.12.0-1) ...
dpkg: warning: unable to delete old directory '/etc/nvidia-container-runtime': Directory not empty
Setting up libnvidia-container1:amd64 (1.14.1-1) ...
Setting up libnvidia-container1-dbg:amd64 (1.14.1-1) ...
Setting up libnvidia-container-dev:amd64 (1.14.1-1) ...
Setting up libnvidia-container-tools (1.14.1-1) ...
Setting up nvidia-container-toolkit-base (1.14.1-1) ...
Setting up nvidia-container-toolkit (1.14.1-1) ...
Processing triggers for libc-bin (2.35-0ubuntu3.9) ...
/sbin/ldconfig.real: /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8 is not a symbolic link/sbin/ldconfig.real: /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_adv_train.so.8 is not a symbolic link/sbin/ldconfig.real: /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn.so.8 is not a symbolic link/sbin/ldconfig.real: /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8 is not a symbolic link/sbin/ldconfig.real: /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8 is not a symbolic link/sbin/ldconfig.real: /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_ops_train.so.8 is not a symbolic link/sbin/ldconfig.real: /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8 is not a symbolic link(base) gpu@gpu01:~/dockerdir/nvidia-toolkit/install1.14$ nvidia-ctk --version
NVIDIA Container Toolkit CLI version 1.14.1
commit: 6094effd58d88becdfb7900ef5df7fa274686620
(base) gpu@gpu01:~/dockerdir/nvidia-toolkit/install1.14$ sudo nvidia-ctk runtime configure --runtime=docker
INFO[0000] Config file does not exist; using empty config 
INFO[0000] Wrote updated config to /etc/docker/daemon.json 
INFO[0000] It is recommended that docker daemon be restarted. 

注意:/sbin/ldconfig.real: /usr/local/cuda-11.8/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8 is not a symbolic link这里不是报错的意思,只是警告,这里其实已经安装成功了,用nvidia-ctk --version命令检查若输出版本号就成功安装了。

相关文章:

  • 在 VMware (WM) 虚拟机上安装的 Ubuntu 22.04 分配了 20GB 磁盘,但仅使用 10GB 就显示 “空间已满“
  • 【ZYNQ Linux开发】gpio子系统相关驱动先于Xgpio注册完成而加载失败的问题分析与探究
  • 《从IaaS到容器化:深度解析云计算三层架构与阿里云ECS+K8s协同实践》
  • 快速入门数据结构--栈
  • 【云计算领域数学基础】组合数学优化
  • 1.19集成开发环境(IDE)
  • 从loader和plugin开始了解webpack
  • Alova 封装与 Vue 3 集成示例
  • 大模型笔记3:通过插件增强大模型的能力
  • RabbitMQ消息队列实战指南
  • 【Go语言-Day 1】扬帆起航:从零到一,精通 Go 语言环境搭建与首个程序
  • qt信号与槽--02
  • SpringBoot电脑商城项目--项目分析及搭建
  • 2011-2020年各省互联网接入端口数数据
  • 项目实训个人工作梳理
  • 抽象工厂1
  • Go实战项目OneX介绍(2/12):项目功能列表介绍
  • 力扣第 454 场周赛
  • Seata 全面深入学习指南
  • LeetCode 第75题:颜色分类
  • 兰州移动端网站建设/优化大师的使用方法
  • php做网站首页/百度数字人内部运营心法曝光
  • 道外网站建设/千锋教育培训机构可靠吗
  • 集团网站建设哪个好/软文推广公司有哪些
  • 依靠百度云做视频网站/站长统计app
  • 企业网站建设西安/注册域名后如何建立网站