当前位置: 首页 > news >正文

自然语言处理NLP 学习笔记

Python 机器人 Demo 源码编写

以下是一个简单的 Python 机器人 Demo 源码,使用 pyautoguispeech_recognition 库实现基本功能,如语音识别和自动化操作。

安装依赖库

确保安装以下库:

pip install pyautogui speechrecognition pyaudio
语音识别模块
import speech_recognition as srdef listen():recognizer = sr.Recognizer()with sr.Microphone() as source:print("请说话...")audio = recognizer.listen(source)try:text = recognizer.recognize_google(audio, language="zh-CN")print(f"你说的是: {text}")return textexcept Exception as e:print("未识别到语音")return None

自动化操作模块
import pyautogui
import timedef execute_command(command):if "打开浏览器" in command:pyautogui.hotkey("win", "r")pyautogui.typewrite("chrome")pyautogui.press("enter")elif "关闭窗口" in command:pyautogui.hotkey("alt", "f4")elif "截图" in command:screenshot = pyautogui.screenshot()screenshot.save("screenshot.png")

主程序循环
if __name__ == "__main__":while True:command = listen()if command:if "退出" in command:print("机器人已关闭")breakexecute_command(command)

自然语言处理NLP


使用 transformers 库或 NLTK 增强语音识别的意图分析能力。

文本分类

文本分类是NLP中常见的任务,用于将文本分配到预定义的类别中。例如,垃圾邮件检测、情感分析(判断评论是积极还是消极)或新闻主题分类。常用的库包括Scikit-learn、TensorFlow和PyTorch,结合预训练模型如BERT或RoBERTa可以显著提升性能。

from transformers import pipeline
classifier = pipeline("text-classification", model="distilbert-base-uncased-finetuned-sst-2-english")
result = classifier("I love using Python for NLP!")
print(result)  # 输出: [{'label': 'POSITIVE', 'score': 0.9998}]

命名实体识别(NER)

NER用于识别文本中的实体(如人名、地点、组织等)。应用场景包括信息抽取、知识图谱构建。流行的工具包括SpaCy、Hugging Face Transformers和Stanford NLP。

import spacy
nlp = spacy.load("en_core_web_sm")
doc = nlp("Apple is looking at buying U.K. startup for $1 billion")
for ent in doc.ents:print(ent.text, ent.label_)  # 输出: Apple ORG, U.K. GPE, $1 billion MONEY
具体NER介绍

实体识别(Named Entity Recognition,简称NER)是自然语言处理(NLP)中的一项基础任务,主要用于从非结构化的文本中识别和提取预定义类别中的命名实体。常见的实体类型包括人名、地名、组织机构名、时间、日期、货币金额、百分比等。

NER的主要应用场景
  1. 信息抽取:从大量文本中提取关键信息,如从新闻中识别重要人物、地点和事件
  2. 搜索引擎优化:帮助搜索引擎更好地理解网页内容,提升搜索结果的相关性
  3. 智能问答系统:准确理解用户问题中的关键实体,提高回答的精确度
  4. 知识图谱构建:作为知识图谱构建的前置步骤,识别文本中的实体和关系
  5. 医疗领域应用:识别医疗文本中的药物名称、疾病名称、症状等专业术语
NER的技术实现方法
  1. 规则方法

    • 基于字典的匹配
    • 使用正则表达式
    • 适用于特定领域且实体类型固定的场景
  2. 统计机器学习方法

    • 隐马尔可夫模型(HMM)
    • 条件随机场(CRF)
    • 最大熵马尔可夫模型(MEMM)
  3. 深度学习方法

    • BiLSTM-CRF模型
    • Transformer架构(如BERT、RoBERTa等预训练模型)
    • 近年来深度学习模型在NER任务中表现突出
NER的一般处理流程
  1. 文本预处理:包括分词、词性标注等基础NLP处理
  2. 特征提取:提取词法特征、上下文特征等
  3. 模型训练:使用标注数据训练实体识别模型
  4. 实体识别:对新文本进行实体识别和分类
  5. 后处理:对识别结果进行验证和修正
评估指标

NER系统的主要评估指标包括

  • 准确率(Precision)
  • 召回率(Recall)
  • F1值(F1-score)
  • 通常采用严格的评估标准,只有实体边界和类型都正确才算识别正确

机器翻译

机器翻译自动将一种语言的文本转换为另一种语言。Google的Transformer模型和Facebook的M2M-100是典型代表。Hugging Face的库提供了便捷的API。

translator = pipeline("translation_en_to_fr", model="t5-small")
result = translator("Hello, how are you?", max_length=40)
print(result)  # 输出: [{'translation_text': 'Bonjour, comment allez-vous?'}]

相关文章:

  • 【狂飙AGI】第5课:前沿技术-文生图(系列1)
  • MIT线性代数第一讲笔记
  • 适合 Acrobat DC 文件类型解析
  • Windows平台轻量级图片处理工具实测:功能与体验分享
  • 嵌入式知识篇---三种坐标系
  • ZW3D 二次开发-制作插件
  • 动态规划之爬楼梯(二)
  • SQL Developer 表复制
  • Vue相关知识2
  • 【嵌入式ARM汇编基础】-快速了解ARM汇编语言
  • 耗时3小时,把这两天做好的爬虫程序,用Python封装成exe文件
  • Rust语言典型并发模式小结
  • Day32
  • verl multi-node train 教程
  • 创新项目实训纪实——总结与反思
  • vue中computed和watch区别
  • RabbitMQ--集群副本
  • 通过 O-RAN 传感进行异常识别和防护
  • 【橘子的AI | 每日一课】Day4!机器学习 (ML) 基础
  • Python 基础语法 (4)【适合0基础】
  • 网站接入服务单位名称/南宁优化网站网络服务
  • 做亚马逊需要的图片外链网站/网推平台有哪些比较好
  • 网站的规划与建设课程设计/wordpress免费网站
  • 潍坊网站建设最新报价/重庆网站建设软件
  • 南海做网站公司/兰州seo
  • 内部卷网站怎么做的/上海有什么seo公司