当前位置: 首页 > news >正文

YOLOv8分类的三种C++实现:opencv dnn/libtorch/onnxruntime

      之前在 YOLOv8 classify介绍_yolov8分类模型-CSDN博客 中介绍过使用YOLOv8模型进行分类,当时只给出了Python的实现,包括训练和预测,这里基于训练生成的模型,分别给出C++的opencv dnn、libtorch、onnruntime的实现。

      opencv dnn实现测试代码如下:

int test_yolov8_classify_opencv()
{auto net = cv::dnn::readNetFromONNX(onnx_file);if (net.empty()) {std::cerr << "Error: there are no layers in the network: " << onnx_file << std::endl;return -1;}if (cuda_enabled) {net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA);net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA);} else {net.setPreferableBackend(cv::dnn::DNN_BACKEND_OPENCV);net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);}auto classes = parse_classes_file(classes_file);if (classes.size() == 0) {std::cerr << "Error: fail to parse classes file: " << classes_file << std::endl;return -1;}constexpr int imgsz{ 224 };for (const auto& [key, val] : get_dir_images(images_dir)) {cv::Mat frame = cv::imread(val, cv::IMREAD_COLOR);if (frame.empty()) {std::cerr << "Warning: unable to load image: " << val << std::endl;continue;}cv::Mat bgr = modify_image_size(frame); // top left padding//cv::Mat bgr;//letter_box(frame, bgr, std::vector<int>{imgsz, imgsz}); // center paddingcv::Mat blob;cv::dnn::blobFromImage(bgr, blob, 1.0 / 255.0, cv::Size(imgsz, imgsz), cv::Scalar(), true, false);net.setInput(blob);std::vector<cv::Mat> outputs;net.forward(outputs, net.getUnconnectedOutLayersNames());double max_val{ 0. };cv::Point max_idx{};cv::minMaxLoc(outputs[0], 0, &max_val, 0, &max_idx);std::cout << "image name: " << val << ", category: " << classes[max_idx.x] << ", conf: " << std::format("{:.4f}",max_val) << std::endl;}return 0;
}

      执行结果如下图所示:图像填充方式有左上角填充和中心填充两种方式,两种方式的均可正确分类,但置信度多少有些差异

      libtorch实现测试代码如下:

int test_yolov8_classify_libtorch()
{if (auto flag = torch::cuda::is_available(); flag == true)std::cout << "cuda is available" << std::endl;elsestd::cout << "cuda is not available" << std::endl;torch::Device device(torch::cuda::is_available() ? torch::kCUDA : torch::kCPU);auto classes = parse_classes_file(classes_file);if (classes.size() == 0) {std::cerr << "Error: fail to parse classes file: " << classes_file << std::endl;return -1;}try {// load modeltorch::jit::script::Module model;if (torch::cuda::is_available() == true)model = torch::jit::load(torchscript_file, torch::kCUDA);elsemodel = torch::jit::load(torchscript_file, torch::kCPU);model.eval();// note: cpu is normal; gpu is abnormal: the model may not be fully placed on the gpu // model = torch::jit::load(file); model.to(torch::kCUDA) ==> model = torch::jit::load(file, torch::kCUDA)// model.to(device, torch::kFloat32);constexpr int imgsz{ 224 };for (const auto& [key, val] : get_dir_images(images_dir)) {// load image and preprocesscv::Mat frame = cv::imread(val, cv::IMREAD_COLOR);if (frame.empty()) {std::cerr << "Warning: unable to load image: " << val << std::endl;continue;}cv::Mat bgr;letter_box(frame, bgr, std::vector<int>{imgsz, imgsz});torch::Tensor tensor = torch::from_blob(bgr.data, { bgr.rows, bgr.cols, 3 }, torch::kByte).to(device);tensor = tensor.toType(torch::kFloat32).div(255);tensor = tensor.permute({ 2, 0, 1 });tensor = tensor.unsqueeze(0);std::vector<torch::jit::IValue> inputs{ tensor };// inferencetorch::Tensor output = model.forward(inputs).toTensor().cpu();auto idx = std::get<1>(output.max(1, true)).item<int>();std::cout << "image name: " << val << ", category: " << classes[idx] << ", conf: " << std::format("{:.4f}", torch::softmax(output, 1)[0][idx].item<float>()) << std::endl;}}catch (const c10::Error& e) {std::cerr << "Error: " << e.msg() << std::endl;return -1;}return 0;
}

      执行结果如下图所示:

      onnxruntime实现测试代码如下:

int test_yolov8_classify_onnxruntime()
{try {Ort::Env env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "Yolo");Ort::SessionOptions session_option;if (cuda_enabled) {OrtCUDAProviderOptions cuda_option;cuda_option.device_id = 0;session_option.AppendExecutionProvider_CUDA(cuda_option);}session_option.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);session_option.SetIntraOpNumThreads(1);session_option.SetLogSeverityLevel(3);Ort::Session session(env, ctow(onnx_file).c_str(), session_option);Ort::AllocatorWithDefaultOptions allocator;std::vector<const char*> input_node_names, output_node_names;std::vector<std::string> input_node_names_, output_node_names_;for (auto i = 0; i < session.GetInputCount(); ++i) {Ort::AllocatedStringPtr input_node_name = session.GetInputNameAllocated(i, allocator);input_node_names_.emplace_back(input_node_name.get());}for (auto i = 0; i < session.GetOutputCount(); ++i) {Ort::AllocatedStringPtr output_node_name = session.GetOutputNameAllocated(i, allocator);output_node_names_.emplace_back(output_node_name.get());}for (auto i = 0; i < input_node_names_.size(); ++i)input_node_names.emplace_back(input_node_names_[i].c_str());for (auto i = 0; i < output_node_names_.size(); ++i)output_node_names.emplace_back(output_node_names_[i].c_str());constexpr int imgsz{ 224 };Ort::RunOptions options(nullptr);std::unique_ptr<float[]> blob(new float[imgsz * imgsz * 3]);std::vector<int64_t> input_node_dims{ 1, 3, imgsz, imgsz };auto classes = parse_classes_file(classes_file);if (classes.size() == 0) {std::cerr << "Error: fail to parse classes file: " << classes_file << std::endl;return -1;}for (const auto& [key, val] : get_dir_images(images_dir)) {cv::Mat frame = cv::imread(val, cv::IMREAD_COLOR);if (frame.empty()) {std::cerr << "Warning: unable to load image: " << val << std::endl;continue;}cv::Mat rgb;letter_box(frame, rgb, std::vector<int>{imgsz, imgsz});cv::cvtColor(rgb, rgb, cv::COLOR_BGR2RGB);image_to_blob(rgb, blob.get());Ort::Value input_tensor = Ort::Value::CreateTensor<float>(Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob.get(), 3 * imgsz * imgsz, input_node_dims.data(), input_node_dims.size());auto output_tensors = session.Run(options, input_node_names.data(), &input_tensor, input_node_names.size(), output_node_names.data(), output_node_names.size());Ort::Value& output_tensor = output_tensors[0];float* output_data = output_tensor.GetTensorMutableData<float>();auto shape = output_tensor.GetTensorTypeAndShapeInfo().GetShape();auto num = shape.size() > 1 ? shape[1] : shape[0];float conf{ 0. };int idx{ -1 };for (auto i = 0; i < num; ++i) {if (output_data[i] > conf) {conf = output_data[i];idx = static_cast<int>(i);}}std::cout << "image name: " << val << ", category: " << classes[idx] << ", conf: " << std::format("{:.4f}", conf) << std::endl;}}catch (const std::exception& e) {std::cerr << "Error: " << e.what() << std::endl;return -1;}return 0;
}

      执行结果如下图所示:

      注:虽然三种方式均可对所有测试图像进行正确分类,但它们的置信度不同

      GitHub:https://github.com/fengbingchun/NN_Test

相关文章:

  • java 设计模式_行为型_16访问者模式
  • 深入解析ArrayList源码:从短链项目实战到底层原理
  • 2025年EAAI SCI1区TOP,贪婪策略粒子群算法GS-IPSO+无人机桥梁巡检覆盖路径规划,深度解析+性能实测
  • 【项目实训#08】HarmonyOS知识图谱前端可视化实现
  • 计算机网络-自顶向下—第一章概述重点复习笔记
  • XMLDecoder、LDAP 注入与修复
  • WebSocket与XMPP:即时通讯技术的本质区别与选择逻辑优雅草卓伊凡|片翼|许贝贝
  • [每周一更]-(第147期):使用 Go 语言实现 JSON Web Token (JWT)
  • 深度学习——基于卷积神经网络的MNIST手写数字识别详解
  • 大规模异步新闻爬虫的分布式实现
  • 【Jmeter】Jmeter 高并发性能压力测试
  • orb_slam--安装配置
  • 混合云战略规划深度解析:多云管理的技术架构与治理框架
  • (题目向,随时更新)动态规划算法专题(2) --见识常见的尝试模型
  • 三维激光雷达在智慧工厂物流测量中的应用分析
  • Pytorch框架——自动微分和反向传播
  • python类成员概要
  • ChatNT-用于DNA、RNA和蛋白质任务的多模态对话代理-文献精读143
  • Unity3D仿星露谷物语开发62之添加NPC角色
  • 嵌入式PADS中元件封装绘制与实现
  • 网站搭建 保定/百度问答
  • 滨海专业做网站/企业短视频推广
  • 制造网站/有哪些实用的网络推广方法
  • 成都做网站建设的公司/网络营销百科
  • 网页设计字号设置代码/宁波seo推广优化
  • 二维码生成器永久免费版下载/q群排名优化软件