YOLOv8分类的三种C++实现:opencv dnn/libtorch/onnxruntime
之前在 YOLOv8 classify介绍_yolov8分类模型-CSDN博客 中介绍过使用YOLOv8模型进行分类,当时只给出了Python的实现,包括训练和预测,这里基于训练生成的模型,分别给出C++的opencv dnn、libtorch、onnruntime的实现。
opencv dnn实现测试代码如下:
int test_yolov8_classify_opencv()
{auto net = cv::dnn::readNetFromONNX(onnx_file);if (net.empty()) {std::cerr << "Error: there are no layers in the network: " << onnx_file << std::endl;return -1;}if (cuda_enabled) {net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA);net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA);} else {net.setPreferableBackend(cv::dnn::DNN_BACKEND_OPENCV);net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);}auto classes = parse_classes_file(classes_file);if (classes.size() == 0) {std::cerr << "Error: fail to parse classes file: " << classes_file << std::endl;return -1;}constexpr int imgsz{ 224 };for (const auto& [key, val] : get_dir_images(images_dir)) {cv::Mat frame = cv::imread(val, cv::IMREAD_COLOR);if (frame.empty()) {std::cerr << "Warning: unable to load image: " << val << std::endl;continue;}cv::Mat bgr = modify_image_size(frame); // top left padding//cv::Mat bgr;//letter_box(frame, bgr, std::vector<int>{imgsz, imgsz}); // center paddingcv::Mat blob;cv::dnn::blobFromImage(bgr, blob, 1.0 / 255.0, cv::Size(imgsz, imgsz), cv::Scalar(), true, false);net.setInput(blob);std::vector<cv::Mat> outputs;net.forward(outputs, net.getUnconnectedOutLayersNames());double max_val{ 0. };cv::Point max_idx{};cv::minMaxLoc(outputs[0], 0, &max_val, 0, &max_idx);std::cout << "image name: " << val << ", category: " << classes[max_idx.x] << ", conf: " << std::format("{:.4f}",max_val) << std::endl;}return 0;
}
执行结果如下图所示:图像填充方式有左上角填充和中心填充两种方式,两种方式的均可正确分类,但置信度多少有些差异
libtorch实现测试代码如下:
int test_yolov8_classify_libtorch()
{if (auto flag = torch::cuda::is_available(); flag == true)std::cout << "cuda is available" << std::endl;elsestd::cout << "cuda is not available" << std::endl;torch::Device device(torch::cuda::is_available() ? torch::kCUDA : torch::kCPU);auto classes = parse_classes_file(classes_file);if (classes.size() == 0) {std::cerr << "Error: fail to parse classes file: " << classes_file << std::endl;return -1;}try {// load modeltorch::jit::script::Module model;if (torch::cuda::is_available() == true)model = torch::jit::load(torchscript_file, torch::kCUDA);elsemodel = torch::jit::load(torchscript_file, torch::kCPU);model.eval();// note: cpu is normal; gpu is abnormal: the model may not be fully placed on the gpu // model = torch::jit::load(file); model.to(torch::kCUDA) ==> model = torch::jit::load(file, torch::kCUDA)// model.to(device, torch::kFloat32);constexpr int imgsz{ 224 };for (const auto& [key, val] : get_dir_images(images_dir)) {// load image and preprocesscv::Mat frame = cv::imread(val, cv::IMREAD_COLOR);if (frame.empty()) {std::cerr << "Warning: unable to load image: " << val << std::endl;continue;}cv::Mat bgr;letter_box(frame, bgr, std::vector<int>{imgsz, imgsz});torch::Tensor tensor = torch::from_blob(bgr.data, { bgr.rows, bgr.cols, 3 }, torch::kByte).to(device);tensor = tensor.toType(torch::kFloat32).div(255);tensor = tensor.permute({ 2, 0, 1 });tensor = tensor.unsqueeze(0);std::vector<torch::jit::IValue> inputs{ tensor };// inferencetorch::Tensor output = model.forward(inputs).toTensor().cpu();auto idx = std::get<1>(output.max(1, true)).item<int>();std::cout << "image name: " << val << ", category: " << classes[idx] << ", conf: " << std::format("{:.4f}", torch::softmax(output, 1)[0][idx].item<float>()) << std::endl;}}catch (const c10::Error& e) {std::cerr << "Error: " << e.msg() << std::endl;return -1;}return 0;
}
执行结果如下图所示:
onnxruntime实现测试代码如下:
int test_yolov8_classify_onnxruntime()
{try {Ort::Env env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "Yolo");Ort::SessionOptions session_option;if (cuda_enabled) {OrtCUDAProviderOptions cuda_option;cuda_option.device_id = 0;session_option.AppendExecutionProvider_CUDA(cuda_option);}session_option.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);session_option.SetIntraOpNumThreads(1);session_option.SetLogSeverityLevel(3);Ort::Session session(env, ctow(onnx_file).c_str(), session_option);Ort::AllocatorWithDefaultOptions allocator;std::vector<const char*> input_node_names, output_node_names;std::vector<std::string> input_node_names_, output_node_names_;for (auto i = 0; i < session.GetInputCount(); ++i) {Ort::AllocatedStringPtr input_node_name = session.GetInputNameAllocated(i, allocator);input_node_names_.emplace_back(input_node_name.get());}for (auto i = 0; i < session.GetOutputCount(); ++i) {Ort::AllocatedStringPtr output_node_name = session.GetOutputNameAllocated(i, allocator);output_node_names_.emplace_back(output_node_name.get());}for (auto i = 0; i < input_node_names_.size(); ++i)input_node_names.emplace_back(input_node_names_[i].c_str());for (auto i = 0; i < output_node_names_.size(); ++i)output_node_names.emplace_back(output_node_names_[i].c_str());constexpr int imgsz{ 224 };Ort::RunOptions options(nullptr);std::unique_ptr<float[]> blob(new float[imgsz * imgsz * 3]);std::vector<int64_t> input_node_dims{ 1, 3, imgsz, imgsz };auto classes = parse_classes_file(classes_file);if (classes.size() == 0) {std::cerr << "Error: fail to parse classes file: " << classes_file << std::endl;return -1;}for (const auto& [key, val] : get_dir_images(images_dir)) {cv::Mat frame = cv::imread(val, cv::IMREAD_COLOR);if (frame.empty()) {std::cerr << "Warning: unable to load image: " << val << std::endl;continue;}cv::Mat rgb;letter_box(frame, rgb, std::vector<int>{imgsz, imgsz});cv::cvtColor(rgb, rgb, cv::COLOR_BGR2RGB);image_to_blob(rgb, blob.get());Ort::Value input_tensor = Ort::Value::CreateTensor<float>(Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob.get(), 3 * imgsz * imgsz, input_node_dims.data(), input_node_dims.size());auto output_tensors = session.Run(options, input_node_names.data(), &input_tensor, input_node_names.size(), output_node_names.data(), output_node_names.size());Ort::Value& output_tensor = output_tensors[0];float* output_data = output_tensor.GetTensorMutableData<float>();auto shape = output_tensor.GetTensorTypeAndShapeInfo().GetShape();auto num = shape.size() > 1 ? shape[1] : shape[0];float conf{ 0. };int idx{ -1 };for (auto i = 0; i < num; ++i) {if (output_data[i] > conf) {conf = output_data[i];idx = static_cast<int>(i);}}std::cout << "image name: " << val << ", category: " << classes[idx] << ", conf: " << std::format("{:.4f}", conf) << std::endl;}}catch (const std::exception& e) {std::cerr << "Error: " << e.what() << std::endl;return -1;}return 0;
}
执行结果如下图所示:
注:虽然三种方式均可对所有测试图像进行正确分类,但它们的置信度不同
GitHub:https://github.com/fengbingchun/NN_Test