当前位置: 首页 > news >正文

最新Transformer模型及深度学习前沿技术应用

前言:

    近年来,随着卷积神经网络(CNN)等深度学习技术的飞速发展,人工智能迎来了第三次发展浪潮,AI技术在各行各业中的应用日益广泛。为了帮助学员深入了解人工智能领域近3-5年内的最新理论与技术,Ai尚研修特别推出全新的《Transformer模型及深度学习前沿技术应用高级培训班》。本课程将带您全面掌握AI前沿技术、新理论及其Python代码实现,助您走在人工智能的技术前沿。课程内容采用“理论讲解 + 案例实战 + 动手实操 + 讨论互动”的多元教学方式,层层剖析,深入浅出地讲解以下核心技术:

注意力机制:理解其在现代深度学习中的关键作用; 
Transformer模型:深入剖析BERT、GPT(1/2/3/3.5/4)、DETR、ViT、Swin Transformer等经典模型的原理与应用; 
生成式模型:探索变分自编码器VAE、生成式对抗网络GAN、扩散模型(Diffusion Model)等技术; 
目标检测算法:详细讲解R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD等算法的实现与优化; 
图神经网络:深入研究GCN、GAT、GIN等图神经网络模型的应用; 
强化学习:解析Q-Learning、DQN等经典强化学习算法; 
深度学习模型可解释性与可视化:讲解CAM、Grad-CAM、LIME、t-SNE等技术,提升模型的可理解性。 

    该教程为进阶教程,适合已经掌握卷积神经网络(CNN)、循环神经网络(RNN)等基础知识的人员,并要求具备一定的Python编程基础,熟悉numpy、pandas、matplotlib、scikit-learn、pytorch等常用第三方库。通过学习,您将能够系统地掌握最新的AI技术,提升解决实际问题的能力,成为AI领域的技术专家。

内容简要:

第一章:注意力(Attention)机制详解

1、注意力机制的背景和动机(为什么需要注意力机制?注意力机制的起源和发展里程碑)。
2、注意力机制的基本原理(什么是注意力机制?注意力机制的数学表达与基本公式、用机器翻译任务带你了解Attention机制、如何计算注意力权重?)
3、注意力机制的主要类型:键值对注意力机制(Key-Value Attention)、自注意力(Self-Attention)与多头注意力(Multi-Head Attention)、Soft Attention 与 Hard Attention、全局(Global)与局部(Local)注意力
4、注意力机制的优化与变体:稀疏注意力(Sparse Attention)、自适应注意力(Adaptive Attention)、动态注意力机制(Dynamic Attention)、跨模态注意力机制(Cross-Modal Attention)
5、注意力机制的可解释性与可视化技术:注意力权重的可视化(权重热图)
6、案例演示     7、实操练习

第二章:自然语言处理(NLP)领域的Transformer模型详解

1、Transformer模型的提出背景(从RNN、LSTM到注意力机制的演进、Transformer模型的诞生背景及其在自然语言处理和计算视觉中的重要性)
2、Transformer模型的进化之路(RCTM→RNN Encoder-Decoder→Bahdanau Attention→Luong Attention→Self Attention)
3、Transformer模型拓扑结构(编码器、解码器、多头自注意力机制、前馈神经网络、层归一化和残差连接等)
4、Transformer模型工作原理(输入数据的Embedding、位置编码、层规范化、带掩码的自注意力层、编码器到解码器的多头注意力层、编码器的完整工作流程、解码器的完整工作流程、Transformer模型的损失函数)
5、BERT模型的工作原理(输入表示、多层Transformer编码器、掩码语言模型MLM、下一句预测NSP)
6、GPT系列模型(GPT-1 / GPT-2 / GPT-3 / GPT-3.5 / GPT-4)的工作原理(单向语言模型、预训练、自回归生成、Zero-shot Learning、上下文学习、RLHF人类反馈强化学习、多模态架构)
7、案例演示       8、实操练习

第三章:计算视觉(CV)领域的Transformer模型详解

1、ViT模型(提出的背景、基本架构、与传统CNN的比较、输入图像的分块处理、位置编码、Transformer编码器、分类头、ViT模型的训练与优化、ViT模型的Python代码实现)
2、Swin Transformer模型(提出的背景、基本架构、与ViT模型的比较、分层架构、窗口机制、位置编码、Transformer编码器、模型的训练与优化、模型的Python代码实现)
3、DETR模型(提出的背景、基本架构、与RCNN、YOLO系列模型的比较、双向匹配损失与匈牙利匹配算法、匹配损失与框架损失、模型的训练与优化、模型的Python代码实现)
4、案例演示       5、实操练习

第四章:时间序列建模与预测的大语言模型

1、时间序列建模的大语言模型技术细节(基于Transformer的时间序列预测原理、自注意力机制、编码器-解码器结构、位置编码)
2、时间序列建模的大语言模型训练
3、Time-LLM模型详解(拓扑结构简介、重新编程时间序列输入、Prompt-as-Prefix (PaP)等)
4、基于TimeGPT的时间序列预测(TimeGPT工作原理详解、TimeGPT库的安装与使用)
5、案例演示与实操练习

第五章:目标检测算法详解

1、目标检测任务与图像分类识别任务的区别与联系。
2、两阶段(Two-stage)目标检测算法:R-CNN、Fast R-CNN、Faster R-CNN(RCNN的工作原理、Fast R-CNN和Faster R-CNN的改进之处 )。
3、一阶段(One-stage)目标检测算法:YOLO模型、SDD模型(拓扑结构及工作原理)。
4、案例演示          5、实操练习

第六章:目标检测的大语言模型

1、基于大语言模型的目标检测的工作原理(输入图像的特征提取、文本嵌入的生成、视觉和语言特征的融合、目标检测与输出)
2、目标检测领域的大语言模型概述(Pix2Seq、Grounding DINO、Lenna等)
3、案例演示与实操练习

第七章:语义分割的大语言模型

1、基于大语言模型的语义分割的工作原理(图像特征提取、文本嵌入生成、跨模态融合、分割预测)
2、语义分割领域的大语言模型概述(ProLab、Segment Anything Model、CLIPSeg、Segment Everything Everywhere Model等)
3、案例演示与实操练习

第八章:LLaVA多模态大语言模型详解

1、LLaVA的核心技术与工作原理(模型拓扑结构讲解)
2、LLaVA与其他多模态模型的区别(LLaVA模型的优势有哪些?)
3、LLaVA的架构与训练(LLaVA的多模态输入处理与特征表示、视觉编码器与语言模型的结合、LLaVA的训练数据与预训练过程)
4、LLaVA的典型应用场景(图像问答、图像生成与描述等)
5、案例演示与实操练习

第九章:物理信息神经网络(PINN)

1、物理信息神经网络的背景(物理信息神经网络(PINNs)的概念及其在科学计算中的重要性、传统数值模拟方法与PINNs的比较)
2、PINN工作原理:物理定律与方程的数学表达、如何将物理定律嵌入到神经网络模型中?PINN的架构(输入层、隐含层、输出层的设计)、物理约束的形式化(如何将边界条件等物理知识融入网络?)损失函数的设计(数据驱动与物理驱动的损失项)
3、案例演示         4、实操练习

第十章:生成式模型详解

1、变分自编码器VAE(自编码器的基本结构与工作原理、降噪自编码器、掩码自编码器、变分推断的基本概念及其与传统贝叶斯推断的区别、VAE的编码器和解码器结构及工作原理)。
2、生成式对抗网络GAN(GAN提出的背景和动机、GAN的拓扑结构和工作原理、生成器与判别器的角色、GAN的目标函数、对抗样本的构造方法)。
3、扩散模型Diffusion Model(扩散模型的核心概念?如何使用随机过程模拟数据生成?扩散模型的工作原理)。
4、跨模态图像生成DALL.E(什么是跨模态学习?DALL.E模型的基本架构、模型训练过程)。
5、案例演示            6、实操练习

第十一章:自监督学习模型详解

1、自监督学习的基本概念(自监督学习的发展背景、自监督学习定义、与有监督学习和无监督学习的区别)
2、经典的自监督学习模型的基本原理、模型架构及训练过程(对比学习: SimCLR、MoCo;生成式方法:AutoEncoder、GPT;预文本任务:BERT掩码语言模型)
3、自监督学习模型的Python代码实现
4、案例演示            5、实操练习

第十二章:图神经网络详解

1、图神经网络的背景和基础知识(什么是图神经网络?图神经网络的发展历程?为什么需要图神经网络?)
2、图的基本概念和表示(图的基本组成:节点、边、属性;图的表示方法:邻接矩阵;图的类型:无向图、有向图、加权图)。
3、图神经网络的工作原理(节点嵌入和特征传播、聚合邻居信息的方法、图神经网络的层次结构)。
4、图卷积网络(GCN)的工作原理。
5、图神经网络的变种和扩展:图注意力网络(GAT)、图同构网络(GIN)、图自编码器、图生成网络。
6、案例演示        7、实操练习

第十三章:强化学习详解

1、强化学习的基本概念和背景(什么是强化学习?强化学习与其他机器学习方法的区别?强化学习的应用领域有哪些?
2、Q-Learning(马尔可夫决策过程、Q-Learning的核心概念、什么是Q函数?Q-Learning的基本更新规则)。
3、深度Q网络(DQN)(为什么传统Q-Learning在高维或连续的状态空间中不再适用?如何使用神经网络代替Q表来估计Q值?目标网络的作用及如何提高DQN的稳定性?)
4、案例演示         5、实操练习

第十四章:深度学习模型可解释性与可视化方法详解

1、什么是模型可解释性?为什么需要对深度学习模型进行解释?
2、可视化方法有哪些(特征图可视化、卷积核可视化、类别激活可视化等)?
3、类激活映射CAM(Class Activation Mapping)、梯度类激活映射GRAD-CAM、局部可解释模型-敏感LIME(Local Interpretable Model-agnostic Explanation)、等方法原理讲解。
4、t-SNE的基本概念及使用t-SNE可视化深度学习模型的高维特征。
5、案例演示         6、实操练习

第十五章:神经架构搜索(Neural Architecture Search, NAS)

1、NAS的背景和动机(传统的神经网络设计依赖经验和直觉,既耗时又可能达不到最优效果。通过自动搜索,可以发现传统方法难以设计的创新和高效架构。)
2、NAS的基本流程:搜索空间定义(确定搜索的网络架构的元素,如层数、类型的层、激活函数等。)、搜索策略(随机搜索、贝叶斯优化、进化算法、强化学习等)、性能评估
3、NAS的关键技术:进化算法(通过模拟生物进化过程,如变异、交叉和选择,来迭代改进网络架构)、强化学习(使用策略网络来生成架构,通过奖励信号来优化策略网络)、贝叶斯优化(利用贝叶斯方法对搜索空间进行高效的全局搜索,平衡探索和利用)
4、案例演示         5、实操练习

推荐阅读:

科研写作AI Agent多维赋能:暨基于 LLM 的语义理解、多智能体系统的任务协同及 n8n 工作流的自动化集成实践技术应用​​​​​​​​​​​

2025最新"科研创新与智能化转型“暨AI智能体(Agent)开发及与大语言模型的本地化部署、优化技术实践

2025最新AI-Python机器学习与深度学习实践技术应用

封闭式SCI论文智创工坊暨精准选题、写作方法论构建、模块化写作及一对一精研 

Nature级顶刊科研绘图复现

相关文章:

  • 图论 算法1
  • day033-备份服务rsync
  • [Linux] -- 大文件拆分、合并与校验全解析:处理 GB/TB 级文件
  • 将python脚本打包进docker
  • ThreadLocal为什么会导致内存泄漏(详细讲解)
  • 模拟电路的知识
  • wordpress首页调用指定ID页面内的相册
  • CSS 外边距合并(Margin Collapsing)问题研究
  • Python 流程控制语句(return、break、continue)
  • 安全有效的 C 盘清理方法
  • 水库大坝安全监测之渗流监测
  • glibc
  • ESP32-CAM识别解析QR二维码输出数据
  • SiteAzure:信箱写信提交报错
  • 已连接(connected)UDP和未连接(unconnected)UDP的区别
  • Day52 Python打卡训练营
  • JMeter + 命令行服务器端压测全流程详解
  • ARM SMMUv3命令和事件队列分析(四)
  • 确认连接的是 Redis 主节点(master),使用 SLAVEOF NO ONE 切换
  • 【ubuntu驱动安装】安装nvidia驱动和cuda环境
  • 专门做推荐的网站/百度百度一下你就知道
  • 创业网站开发/站长之家seo工具包
  • 在家做任务赚钱网站/重庆seo顾问
  • 做网站推广用优化还是竞价/怎么提升关键词的质量度
  • 做康复医院网站/在线域名ip查询
  • 做网站自己买服务器好还是用别人的/怎么做网站